openEMS/FDTD/operator.h

168 lines
5.4 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPERATOR_H
#define OPERATOR_H
#include "ContinuousStructure.h"
#include "tools/AdrOp.h"
#include "tools/constants.h"
#define FDTD_FLOAT float
class Operator_Extension;
//! Abstract base-class for the FDTD-operator
class Operator
{
public:
//! Create a new operator
static Operator* New();
virtual ~Operator();
virtual bool SetGeometryCSX(ContinuousStructure* geo);
virtual ContinuousStructure* GetGeometryCSX() {return CSX;}
virtual int CalcECOperator();
//! Calculate a custom signal \return number of Nyquist timesteps defined by f0
virtual unsigned int CalcCustomExcitation(double f0, int nTS, string signal);
//! Calculate an excitation with center of f0 and the half bandwidth fc \return number of Nyquist timesteps
virtual unsigned int CalcGaussianPulsExcitation(double f0, double fc);
//! Calculate a sinusoidal excitation with frequency f0 and a duration of nTS number of timesteps \return number of Nyquist timesteps
virtual unsigned int CalcSinusExcitation(double f0, int nTS);
//! Calculate a dirac impuls excitation \return number of Nyquist timesteps
virtual unsigned int CalcDiracPulsExcitation();
//! Calculate a step excitation \return number of Nyquist timesteps
virtual unsigned int CalcStepExcitation();
//! Get the excitation timestep with the (first) max amplitude
virtual unsigned int GetMaxExcitationTimestep() const;
virtual void SetBoundaryCondition(int* BCs) {for (int n=0;n<6;++n) m_BC[n]=BCs[n];}
virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries
virtual void ApplyMagneticBC(bool* dirs);
double GetTimestep() const {return dT;};
double GetNumberCells() const;
virtual unsigned int GetNumberOfLines(int ny) const {return numLines[ny];}
void SetNyquistNum(unsigned int nyquist) {m_nyquistTS=nyquist;}
unsigned int GetNyquistNum() const {return m_nyquistTS;}
unsigned int CalcNyquistNum(double fmax);
void ShowStat() const;
void DumpOperator2File(string filename);
void DumpMaterial2File(string filename);
//! Get the name for the given direction: 0 -> x, 1 -> y, 2 -> z
virtual string GetDirName(int ny) const;
virtual double GetGridDelta() const {return gridDelta;}
//! Get the mesh delta times the grid delta for a 3D position
virtual double GetMeshDelta(int n, const int* pos, bool dualMesh=false) const;
virtual double GetMeshDelta(int n, const unsigned int* pos, bool dualMesh=false) const;
//! Get the disc line in n direction
virtual double GetDiscLine(int n, int pos, bool dualMesh=false) const;
virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const;
virtual bool SnapToMesh(double* coord, unsigned int* uicoord, bool lower=false, bool* inside=NULL);
virtual void AddExtension(Operator_Extension* op_ext);
virtual size_t GetNumberOfExtentions() const {return m_Op_exts.size();}
virtual Operator_Extension* GetExtension(size_t index) const {return m_Op_exts.at(index);}
protected:
//! use New() for creating a new Operator
Operator();
virtual void Init();
virtual void Reset();
virtual void InitOperator();
struct Grid_Path
{
vector<unsigned int> posPath[3];
vector<unsigned short> dir;
};
struct Grid_Path FindPath(double start[], double stop[]);
ContinuousStructure* CSX;
int m_BC[6];
//! Calculate the field excitations.
virtual bool CalcFieldExcitation();
virtual bool CalcPEC();
//Calc timestep only internal use
virtual double CalcTimestep();
double dT; //FDTD timestep!
unsigned int m_nyquistTS;
//! Calc operator at certain pos
virtual void Calc_ECOperatorPos(int n, unsigned int* pos);
//EC elements, internal only!
virtual bool Calc_EC();
virtual bool Calc_ECPos(int n, unsigned int* pos, double* inEC);
virtual bool Calc_EffMatPos(int n, unsigned int* pos, double* inMat);
double* EC_C[3];
double* EC_G[3];
double* EC_L[3];
double* EC_R[3];
unsigned int numLines[3];
double* discLines[3];
double gridDelta;
AdrOp* MainOp;
AdrOp* DualOp;
vector<Operator_Extension*> m_Op_exts;
// engine/post-proc needs access
public:
//EC operator
FDTD_FLOAT**** vv; //calc new voltage from old voltage
FDTD_FLOAT**** vi; //calc new voltage from old current
FDTD_FLOAT**** ii; //calc new current from old current
FDTD_FLOAT**** iv; //calc new current from old voltage
//Excitation time-signal
unsigned int ExciteLength;
FDTD_FLOAT* ExciteSignal;
//E-Field/voltage Excitation
unsigned int E_Exc_Count;
unsigned int* E_Exc_index[3];
unsigned short* E_Exc_dir;
FDTD_FLOAT* E_Exc_amp; //represented as edge-voltages!!
unsigned int* E_Exc_delay;
//H-Field/current Excitation
unsigned int Curr_Exc_Count;
unsigned int* Curr_Exc_index[3];
unsigned short* Curr_Exc_dir;
FDTD_FLOAT* Curr_Exc_amp; //represented as edge-currents!!
unsigned int* Curr_Exc_delay;
};
#endif // OPERATOR_H