242 lines
7.8 KiB
Matlab
242 lines
7.8 KiB
Matlab
%
|
|
% Tutorials / conical horn antenna
|
|
%
|
|
% Describtion at:
|
|
% http://openems.de/index.php/Tutorial:_Conical_Horn_Antenna
|
|
%
|
|
% Tested with
|
|
% - Matlab 2011a / Octave 3.4.3
|
|
% - openEMS v0.0.27
|
|
%
|
|
% (C) 2011,2012 Thorsten Liebig <thorsten.liebig@uni-due.de>
|
|
|
|
close all
|
|
clear
|
|
clc
|
|
|
|
%% setup the simulation
|
|
physical_constants;
|
|
unit = 1e-3; % all length in mm
|
|
|
|
% horn radius
|
|
horn.radius = 20;
|
|
% horn length in z-direction
|
|
horn.length = 50;
|
|
|
|
horn.feed_length = 50;
|
|
|
|
horn.thickness = 2;
|
|
|
|
% horn opening angle
|
|
horn.angle = 20*pi/180;
|
|
|
|
% size of the simulation box
|
|
SimBox = [100 100 100]*2;
|
|
|
|
% frequency range of interest
|
|
f_start = 10e9;
|
|
f_stop = 20e9;
|
|
|
|
% frequency of interest
|
|
f0 = 15e9;
|
|
|
|
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% by David M. Pozar, Microwave Engineering, third edition, page 113
|
|
freq = linspace(f_start,f_stop,201);
|
|
|
|
p11 = 1.841;
|
|
kc = p11 / horn.radius /unit;
|
|
k = 2*pi*freq/C0;
|
|
fc = C0*kc/2/pi;
|
|
beta = sqrt(k.^2 - kc^2);
|
|
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
|
|
|
|
% mode profile E- and H-field
|
|
kc = kc*unit;
|
|
func_Er = [ num2str(-1/kc^2,'%14.13f') '/rho*cos(a)*j1(' num2str(kc,'%14.13f') '*rho)'];
|
|
func_Ea = [ num2str(1/kc,'%14.13f') '*sin(a)*0.5*(j0(' num2str(kc,'%14.13f') '*rho)-jn(2,' num2str(kc,'%14.13f') '*rho))'];
|
|
func_Ex = ['(' func_Er '*cos(a) - ' func_Ea '*sin(a) ) * (rho<' num2str(horn.radius) ')'];
|
|
func_Ey = ['(' func_Er '*sin(a) + ' func_Ea '*cos(a) ) * (rho<' num2str(horn.radius) ')'];
|
|
|
|
func_Ha = [ num2str(-1/kc^2,'%14.13f') '/rho*cos(a)*j1(' num2str(kc,'%14.13f') '*rho)'];
|
|
func_Hr = [ '-1*' num2str(1/kc,'%14.13f') '*sin(a)*0.5*(j0(' num2str(kc,'%14.13f') '*rho)-jn(2,' num2str(kc,'%14.13f') '*rho))'];
|
|
func_Hx = ['(' func_Hr '*cos(a) - ' func_Ha '*sin(a) ) * (rho<' num2str(horn.radius) ')'];
|
|
func_Hy = ['(' func_Hr '*sin(a) + ' func_Ha '*cos(a) ) * (rho<' num2str(horn.radius) ')'];
|
|
|
|
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e9) ' GHz']);
|
|
|
|
if (f_start<fc)
|
|
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
|
|
end
|
|
|
|
%% setup FDTD parameter & excitation function
|
|
FDTD = InitFDTD( 30000, 1e-4 );
|
|
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
|
|
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions
|
|
FDTD = SetBoundaryCond( FDTD, BC );
|
|
|
|
%% setup CSXCAD geometry & mesh
|
|
% currently, openEMS cannot automatically generate a mesh
|
|
max_res = c0 / (f_stop) / unit / 15; % cell size: lambda/20
|
|
CSX = InitCSX();
|
|
|
|
%create fixed lines for the simulation box, substrate and port
|
|
mesh.x = [-SimBox(1)/2 -horn.radius 0 horn.radius SimBox(1)/2];
|
|
mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified fixed mesh lines
|
|
|
|
mesh.y = mesh.x;
|
|
|
|
%create fixed lines for the simulation box and given number of lines inside the substrate
|
|
mesh.z = [-horn.feed_length 0 SimBox(3) ];
|
|
mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 );
|
|
|
|
CSX = DefineRectGrid( CSX, unit, mesh );
|
|
|
|
%% create horn
|
|
% horn + waveguide, defined by a rotational polygon
|
|
CSX = AddMetal(CSX, 'Conical_Horn');
|
|
p(1,1) = horn.radius+horn.thickness; % x-coord point 1
|
|
p(2,1) = -horn.feed_length; % z-coord point 1
|
|
p(1,end+1) = horn.radius+horn.thickness; % x-coord point 1
|
|
p(2,end) = 0; % z-coord point 1
|
|
p(1,end+1) = horn.radius+horn.thickness + sin(horn.angle)*horn.length; % x-coord point 2
|
|
p(2,end) = horn.length; % y-coord point 2
|
|
p(1,end+1) = horn.radius + sin(horn.angle)*horn.length; % x-coord point 2
|
|
p(2,end) = horn.length; % y-coord point 2
|
|
p(1,end+1) = horn.radius; % x-coord point 1
|
|
p(2,end) = 0; % z-coord point 1
|
|
p(1,end+1) = horn.radius; % x-coord point 1
|
|
p(2,end) = -horn.feed_length; % z-coord point 1
|
|
CSX = AddRotPoly(CSX,'Conical_Horn',10,0,2,p);
|
|
|
|
% horn aperture
|
|
A = pi*((horn.radius + sin(horn.angle)*horn.length)*unit)^2;
|
|
|
|
% %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% xy-mode profile excitation located directly on top of pml (first 8 z-lines)
|
|
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
|
|
weight{1} = func_Ex;
|
|
weight{2} = func_Ey;
|
|
weight{3} = 0;
|
|
CSX = SetExcitationWeight(CSX,'excite',weight);
|
|
start=[0 0 mesh.z(8)-0.1 ];
|
|
stop =[0 0 mesh.z(8)+0.1 ];
|
|
CSX = AddCylinder(CSX,'excite',0 ,start,stop,horn.radius);
|
|
|
|
CSX = AddDump(CSX,'Exc_dump');
|
|
start=[-horn.radius -horn.radius mesh.z(8)-0.1 ];
|
|
stop =[+horn.radius +horn.radius mesh.z(8)+0.1 ];
|
|
CSX = AddBox(CSX,'Exc_dump',0,start,stop);
|
|
|
|
%% voltage and current definitions using the mode matching probes %%%%%%%%%
|
|
%port 1
|
|
start = [-horn.radius -horn.radius mesh.z(1)+horn.feed_length/2];
|
|
stop = [ horn.radius horn.radius mesh.z(1)+horn.feed_length/2];
|
|
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
|
|
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
|
|
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
|
|
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
|
|
|
%% nf2ff calc
|
|
start = [mesh.x(9) mesh.y(9) mesh.z(9)];
|
|
stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)];
|
|
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, [1 1 1 1 0 1]);
|
|
|
|
%% prepare simulation folder
|
|
Sim_Path = 'tmp';
|
|
Sim_CSX = 'horn_ant.xml';
|
|
|
|
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
|
|
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
|
|
|
|
%% write openEMS compatible xml-file
|
|
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
|
|
|
|
%% show the structure
|
|
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
|
|
|
|
%% run openEMS
|
|
RunOpenEMS( Sim_Path, Sim_CSX);
|
|
|
|
%% postprocessing & do the plots
|
|
U = ReadUI( 'ut1', Sim_Path, freq ); % time domain/freq domain voltage
|
|
I = ReadUI( 'it1', Sim_Path, freq ); % time domain/freq domain current (half time step is corrected)
|
|
|
|
% plot reflection coefficient S11
|
|
figure
|
|
uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val .* ZL_a);
|
|
if_inc = 0.5*(I.FD{1}.val + U.FD{1}.val ./ ZL_a);
|
|
uf_ref = U.FD{1}.val - uf_inc;
|
|
if_ref = if_inc - I.FD{1}.val;
|
|
s11 = uf_ref ./ uf_inc;
|
|
plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
|
|
ylim([-60 0]);
|
|
grid on
|
|
title( 'reflection coefficient S_{11}' );
|
|
xlabel( 'frequency f / GHz' );
|
|
ylabel( 'reflection coefficient |S_{11}|' );
|
|
|
|
P_in = 0.5*uf_inc .* conj( if_inc ); % antenna feed power
|
|
|
|
drawnow
|
|
|
|
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
% calculate the far field at phi=0 degrees and at phi=90 degrees
|
|
thetaRange = (0:2:359) - 180;
|
|
r = 1; % evaluate fields at radius r
|
|
disp( 'calculating far field at phi=[0 90] deg...' );
|
|
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180);
|
|
|
|
Dlog=10*log10(nf2ff.Dmax);
|
|
G_a = 4*pi*A/(c0/f0)^2;
|
|
e_a = nf2ff.Dmax/G_a;
|
|
|
|
% display some antenna parameter
|
|
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
|
|
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
|
|
disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] );
|
|
|
|
|
|
%%
|
|
% normalized directivity
|
|
D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1})));
|
|
% directivity
|
|
D_log = D_log + 10*log10(nf2ff.Dmax);
|
|
|
|
% display polar plot
|
|
figure
|
|
plot( nf2ff.theta, D_log(:,1) ,'k-' );
|
|
xlabel( 'theta (deg)' );
|
|
ylabel( 'directivity (dBi)');
|
|
grid on;
|
|
hold on;
|
|
plot( nf2ff.theta, D_log(:,2) ,'r-' );
|
|
legend('phi=0','phi=90')
|
|
|
|
drawnow
|
|
|
|
%% calculate 3D pattern
|
|
phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) );
|
|
thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ]));
|
|
|
|
disp( 'calculating 3D far field...' );
|
|
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');
|
|
|
|
E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
|
|
|
|
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
|
|
x = E_far_normalized .* sin(theta) .* cos(phi);
|
|
y = E_far_normalized .* sin(theta) .* sin(phi);
|
|
z = E_far_normalized .* cos(theta);
|
|
figure
|
|
surf( x,y,z, E_far_normalized, 'EdgeColor','none' );
|
|
axis equal
|
|
axis off
|
|
xlabel( 'x' );
|
|
ylabel( 'y' );
|
|
zlabel( 'z' );
|
|
|
|
%%
|
|
DumpFF2VTK([Sim_Path '/Conical_Horn_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,1e-3);
|