432 lines
12 KiB
C++
432 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "engine.h"
|
|
#include "processfields.h"
|
|
#include "operator_cylinder.h"
|
|
#include "operator_extension.h"
|
|
#include "operator_ext_cylinder.h"
|
|
|
|
Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads)
|
|
{
|
|
cout << "Create cylindrical FDTD operator" << endl;
|
|
Operator_Cylinder* op = new Operator_Cylinder();
|
|
op->setNumThreads(numThreads);
|
|
op->Init();
|
|
return op;
|
|
}
|
|
|
|
Operator_Cylinder::Operator_Cylinder() : Operator_Multithread()
|
|
{
|
|
m_MeshType = ProcessFields::CYLINDRICAL_MESH;
|
|
}
|
|
|
|
Operator_Cylinder::~Operator_Cylinder()
|
|
{
|
|
Operator_Multithread::Reset();
|
|
}
|
|
|
|
void Operator_Cylinder::Init()
|
|
{
|
|
CC_closedAlpha = false;
|
|
CC_R0_included = false;
|
|
Operator_Multithread::Init();
|
|
}
|
|
|
|
void Operator_Cylinder::Reset()
|
|
{
|
|
Operator_Multithread::Reset();
|
|
}
|
|
|
|
void Operator_Cylinder::InitOperator()
|
|
{
|
|
Operator_Multithread::InitOperator();
|
|
}
|
|
|
|
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
|
|
{
|
|
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
|
|
if (CC_closedAlpha && ny==1)
|
|
return numLines[1]-1;
|
|
|
|
return numLines[ny];
|
|
}
|
|
|
|
string Operator_Cylinder::GetDirName(int ny) const
|
|
{
|
|
if (ny==0) return "rho";
|
|
if (ny==1) return "alpha";
|
|
if (ny==2) return "z";
|
|
return "";
|
|
}
|
|
|
|
double Operator_Cylinder::GetMeshDelta(int n, const int* pos, bool dualMesh) const
|
|
{
|
|
double delta = Operator_Multithread::GetMeshDelta(n,pos,dualMesh);
|
|
if (delta==0) return delta;
|
|
if (n==1)
|
|
{
|
|
return delta * GetDiscLine(0,pos[0],dualMesh);
|
|
}
|
|
return delta;
|
|
}
|
|
|
|
double Operator_Cylinder::GetNodeArea(int ny, const int pos[3], bool dualMesh) const
|
|
{
|
|
if (ny==2)
|
|
{
|
|
double da = Operator_Multithread::GetMeshDelta(1,pos,dualMesh)/gridDelta;
|
|
double r1,r2;
|
|
if (!dualMesh)
|
|
{
|
|
r1 = (discLines[0][pos[0]] - fabs(MainOp->GetIndexDelta(0,pos[0]-1))/2.0)*gridDelta;
|
|
r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0] ))/2.0)*gridDelta;
|
|
}
|
|
else
|
|
{
|
|
r1 = discLines[0][pos[0]]*gridDelta;
|
|
r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0])))*gridDelta;
|
|
}
|
|
if (r1<0)
|
|
return da * pow(r2,2);
|
|
return da/2* (pow(r2,2) - pow(r1,2));
|
|
}
|
|
return Operator_Multithread::GetNodeArea(ny,pos,dualMesh);
|
|
}
|
|
|
|
bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
|
|
{
|
|
if (Operator_Multithread::SetGeometryCSX(geo)==false) return false;
|
|
|
|
double minmaxA = fabs(discLines[1][numLines[1]-1]-discLines[1][0]);
|
|
if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width
|
|
{
|
|
cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl;
|
|
CC_closedAlpha = true;
|
|
discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI;
|
|
cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl;
|
|
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1])
|
|
{
|
|
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
|
|
exit(1);
|
|
}
|
|
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0)
|
|
{
|
|
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
|
|
discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0);
|
|
}
|
|
}
|
|
else if (minmaxA>2*PI)
|
|
{cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;}
|
|
else
|
|
{
|
|
CC_closedAlpha=false;
|
|
}
|
|
|
|
if (discLines[0][0]<0)
|
|
{cerr << "Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!!" << endl; Reset(); return false;}
|
|
else if (discLines[0][0]==0.0)
|
|
{
|
|
cout << "Operator_Cylinder::SetGeometryCSX: r=0 included..." << endl;
|
|
CC_R0_included= true; //also needed for correct ec-calculation
|
|
}
|
|
|
|
if (CC_closedAlpha || CC_R0_included)
|
|
this->AddExtension(new Operator_Ext_Cylinder(this));
|
|
|
|
return true;
|
|
}
|
|
|
|
void Operator_Cylinder::ApplyElectricBC(bool* dirs)
|
|
{
|
|
if (dirs==NULL) return;
|
|
if (CC_closedAlpha)
|
|
{
|
|
dirs[2]=0;dirs[3]=0; //no PEC in alpha directions...
|
|
}
|
|
if (CC_R0_included)
|
|
{
|
|
// E in alpha direction ( aka volt[1][x][y][z] ) is not defined for r==0 --> always zero...
|
|
unsigned int pos[3] = {0,0,0};
|
|
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
|
|
{
|
|
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
|
|
{
|
|
GetVV(1,pos[0],pos[1],pos[2]) = 0;
|
|
GetVI(1,pos[0],pos[1],pos[2]) = 0;
|
|
}
|
|
}
|
|
}
|
|
Operator_Multithread::ApplyElectricBC(dirs);
|
|
}
|
|
|
|
void Operator_Cylinder::ApplyMagneticBC(bool* dirs)
|
|
{
|
|
if (dirs==NULL) return;
|
|
if (CC_closedAlpha)
|
|
{
|
|
dirs[2]=0;dirs[3]=0; //no PMC in alpha directions...
|
|
}
|
|
if (CC_R0_included)
|
|
{
|
|
dirs[0]=0; //no PMC in r_min directions...
|
|
}
|
|
Operator_Multithread::ApplyMagneticBC(dirs);
|
|
}
|
|
|
|
bool Operator_Cylinder::Calc_ECPos(int n, const unsigned int* pos, double* inEC) const
|
|
{
|
|
double coord[3];
|
|
double shiftCoord[3];
|
|
int nP = (n+1)%3;
|
|
int nPP = (n+2)%3;
|
|
coord[0] = discLines[0][pos[0]];
|
|
coord[1] = discLines[1][pos[1]];
|
|
coord[2] = discLines[2][pos[2]];
|
|
double delta=MainOp->GetIndexDelta(n,pos[n]);
|
|
double deltaP=MainOp->GetIndexDelta(nP,pos[nP]);
|
|
double deltaPP=MainOp->GetIndexDelta(nPP,pos[nPP]);
|
|
double delta_M=MainOp->GetIndexDelta(n,pos[n]-1);
|
|
double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1);
|
|
double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1);
|
|
double geom_factor=0,A_n=0;
|
|
|
|
//******************************* epsilon,kappa averaging *****************************//
|
|
//shift up-right
|
|
shiftCoord[n] = coord[n]+delta*0.5;
|
|
shiftCoord[nP] = coord[nP]+deltaP*0.25;
|
|
shiftCoord[nPP] = coord[nPP]+deltaPP*0.25;
|
|
CSProperties* prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
geom_factor = fabs((deltaPP*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
|
|
break;
|
|
case 1:
|
|
geom_factor = fabs(deltaP*deltaPP/(delta*coord[0]))*0.25;
|
|
break;
|
|
case 2:
|
|
geom_factor = fabs((deltaPP/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
|
|
break;
|
|
}
|
|
geom_factor*=gridDelta;
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[0] = mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
|
|
inEC[1] = mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
|
|
}
|
|
else
|
|
{
|
|
inEC[0] = 1*geom_factor*__EPS0__;
|
|
inEC[1] = 0;
|
|
}
|
|
|
|
//shift up-left
|
|
shiftCoord[n] = coord[n]+delta*0.5;
|
|
shiftCoord[nP] = coord[nP]-deltaP_M*0.25;
|
|
shiftCoord[nPP] = coord[nPP]+deltaPP*0.25;
|
|
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
geom_factor = fabs((deltaPP*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
|
|
break;
|
|
case 1:
|
|
geom_factor = fabs(deltaP_M*deltaPP/(delta*coord[0]))*0.25;
|
|
break;
|
|
case 2:
|
|
geom_factor = fabs((deltaPP/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
|
|
break;
|
|
}
|
|
geom_factor*=gridDelta;
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
|
|
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
|
|
}
|
|
else
|
|
{
|
|
inEC[0] += 1*geom_factor*__EPS0__;
|
|
inEC[1] += 0;
|
|
}
|
|
|
|
//shift down-right
|
|
shiftCoord[n] = coord[n]+delta*0.5;
|
|
shiftCoord[nP] = coord[nP]+deltaP*0.25;
|
|
shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25;
|
|
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
geom_factor = fabs((deltaPP_M*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
|
|
break;
|
|
case 1:
|
|
geom_factor = fabs(deltaP*deltaPP_M/(delta*coord[0]))*0.25;
|
|
break;
|
|
case 2:
|
|
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
|
|
break;
|
|
}
|
|
geom_factor*=gridDelta;
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
|
|
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
|
|
}
|
|
else
|
|
{
|
|
inEC[0] += 1*geom_factor*__EPS0__;
|
|
inEC[1] += 0;
|
|
}
|
|
|
|
//shift down-left
|
|
shiftCoord[n] = coord[n]+delta*0.5;
|
|
shiftCoord[nP] = coord[nP]-deltaP_M*0.25;
|
|
shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25;
|
|
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
geom_factor = fabs((deltaPP_M*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
|
|
break;
|
|
case 1:
|
|
geom_factor = fabs(deltaP_M*deltaPP_M/(delta*coord[0]))*0.25;
|
|
break;
|
|
case 2:
|
|
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
|
|
break;
|
|
}
|
|
geom_factor*=gridDelta;
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
|
|
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
|
|
}
|
|
else
|
|
{
|
|
inEC[0] += 1*geom_factor*__EPS0__;
|
|
inEC[1] += 0;
|
|
}
|
|
|
|
//******************************* mu,sigma averaging *****************************//
|
|
//shift down
|
|
shiftCoord[n] = coord[n]-delta_M*0.25;
|
|
shiftCoord[nP] = coord[nP]+deltaP*0.5;
|
|
shiftCoord[nPP] = coord[nPP]+deltaPP*0.5;
|
|
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
double delta_n = fabs(delta_M);
|
|
if (n==1)
|
|
{
|
|
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
|
|
}
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[2] = delta_n / mat->GetMueWeighted(n,shiftCoord);
|
|
if (mat->GetSigma(n))
|
|
inEC[3] = delta_n / mat->GetSigmaWeighted(n,shiftCoord);
|
|
else
|
|
inEC[3] = 0;
|
|
}
|
|
else
|
|
{
|
|
inEC[2] = delta_n;
|
|
inEC[3] = 0;
|
|
}
|
|
//shift up
|
|
shiftCoord[n] = coord[n]+delta*0.25;
|
|
shiftCoord[nP] = coord[nP]+deltaP*0.5;
|
|
shiftCoord[nPP] = coord[nPP]+deltaPP*0.5;
|
|
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
|
|
delta_n = fabs(delta);
|
|
if (n==1)
|
|
{
|
|
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
|
|
}
|
|
if (prop)
|
|
{
|
|
CSPropMaterial* mat = prop->ToMaterial();
|
|
inEC[2] += delta_n / mat->GetMueWeighted(n,shiftCoord);
|
|
if (mat->GetSigmaWeighted(n,shiftCoord))
|
|
inEC[3] += delta_n/mat->GetSigmaWeighted(n,shiftCoord);
|
|
else
|
|
inEC[3] = 0;
|
|
}
|
|
else
|
|
{
|
|
inEC[2] += delta_n;
|
|
inEC[3] = 0;
|
|
}
|
|
|
|
A_n = fabs(deltaP*deltaPP);
|
|
if (n==0) //x-direction n==0 -> r; nP==1 -> alpha; nPP==2 -> z
|
|
{
|
|
A_n = A_n * coord[0];
|
|
}
|
|
if (n==2) //z-direction n==2 -> z; nP==0 -> r; nPP==1 -> alpha
|
|
{
|
|
A_n = fabs(deltaPP) * (pow(coord[0]+fabs(deltaP),2.0) - pow(coord[0],2.0))*0.5;
|
|
}
|
|
|
|
inEC[2] = gridDelta * A_n * 2 * __MUE0__ / inEC[2];
|
|
if (inEC[3]) inEC[3]=gridDelta * A_n * 2 / inEC[3];
|
|
|
|
// if ((n==1) && (pos[1]==0) && (pos[2]==0))
|
|
// cerr << inEC[2]/(coord[0]) << endl;
|
|
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[2] << endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Operator_Cylinder::Calc_EffMatPos(int n, const unsigned int* pos, double* inMat) const
|
|
{
|
|
Operator_Multithread::Calc_EffMatPos(n, pos, inMat);
|
|
|
|
// H_rho is not defined at position r==0
|
|
if (CC_R0_included && (n==0) && (pos[0]==0))
|
|
{
|
|
inMat[2] = 0;
|
|
inMat[3] = 0;
|
|
}
|
|
|
|
// E_alpha is not defined at position r==0
|
|
if (CC_R0_included && (n==1) && (pos[0]==0))
|
|
{
|
|
inMat[0]=0;
|
|
inMat[1]=0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Operator_Cylinder::AddExtension(Operator_Extension* op_ext)
|
|
{
|
|
if (op_ext->IsCylinderCoordsSave())
|
|
m_Op_exts.push_back(op_ext);
|
|
else
|
|
cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl;
|
|
}
|
|
|
|
double Operator_Cylinder::CalcTimestep()
|
|
{
|
|
return CalcTimestep_Var1();
|
|
}
|