openEMS/Common/processfields.cpp

548 lines
15 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iomanip>
#include <H5Cpp.h>
#include "tools/global.h"
#include "tools/vtk_file_io.h"
#include "processfields.h"
#include "FDTD/engine_interface_fdtd.h"
ProcessFields::ProcessFields(Engine_Interface_Base* eng_if) : Processing(eng_if)
{
m_DumpType = E_FIELD_DUMP;
// vtk-file is default
m_fileType = VTK_FILETYPE;
m_SampleType = NONE;
m_Dump_File = NULL;
SetPrecision(6);
m_dualTime = false;
// dump box should be always inside the snapped lines
m_SnapMethod = 1;
for (int n=0; n<3; ++n)
{
numLines[n]=0;
posLines[n]=NULL;
discLines[n]=NULL;
subSample[n]=1;
optResolution[n]=0;
}
}
ProcessFields::~ProcessFields()
{
delete m_Dump_File;
m_Dump_File = NULL;
for (int n=0; n<3; ++n)
{
delete[] posLines[n];
posLines[n]=NULL;
delete[] discLines[n];
discLines[n]=NULL;
}
}
string ProcessFields::GetFieldNameByType(DumpType type)
{
switch (type)
{
case E_FIELD_DUMP:
return "E-Field";
case H_FIELD_DUMP:
return "H-Field";
case J_FIELD_DUMP:
return "J-Field";
case ROTH_FIELD_DUMP:
return "RotH-Field";
case SAR_LOCAL_DUMP:
return "SAR-local";
}
return "unknown field";
}
void ProcessFields::InitProcess()
{
if (Enabled==false) return;
CalcMeshPos();
if (m_fileType==VTK_FILETYPE)
{
delete m_Dump_File;
m_Dump_File = new VTK_File_IO(m_filename,(int)m_Mesh_Type);
#ifdef OUTPUT_IN_DRAWINGUNITS
double discScaling = 1;
#else
double discScaling = Op->GetGridDelta();
#endif
m_Dump_File->SetMeshLines(discLines,numLines,discScaling);
m_Dump_File->SetNativeDump(g_settings.NativeFieldDumps());
}
}
void ProcessFields::SetDumpMode(Engine_Interface_Base::InterpolationType mode)
{
m_Eng_Interface->SetInterpolationType(mode);
if (mode==Engine_Interface_Base::CELL_INTERPOLATE)
m_dualMesh=true;
else if (mode==Engine_Interface_Base::NODE_INTERPOLATE)
m_dualMesh=false;
//else keep the preset/user defined case
}
void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
{
Processing::DefineStartStopCoord(dstart,dstop);
// normalize order of start and stop
for (int n=0; n<3; ++n)
{
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
}
}
double ProcessFields::CalcTotalEnergy() const
{
double energy=0.0;
Engine_Interface_FDTD* EI_FDTD = dynamic_cast<Engine_Interface_FDTD*>(m_Eng_Interface);
if (EI_FDTD)
{
const Engine* Eng = EI_FDTD->GetFDTDEngine();
unsigned int pos[3];
for (pos[0]=0; pos[0]<Op->GetNumberOfLines(0)-1; ++pos[0])
{
for (pos[1]=0; pos[1]<Op->GetNumberOfLines(1)-1; ++pos[1])
{
for (pos[2]=0; pos[2]<Op->GetNumberOfLines(2)-1; ++pos[2])
{
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
}
}
}
}
return energy*0.5;
}
void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir)
{
if (dir>2) return;
if (dir<0)
{
subSample[0]=subSampleRate;
subSample[1]=subSampleRate;
subSample[2]=subSampleRate;
}
else subSample[dir]=subSampleRate;
m_SampleType = SUBSAMPLE;
}
void ProcessFields::SetOptResolution(double optRes, int dir)
{
if (dir>2) return;
if (dir<0)
{
optResolution[0]=optRes;
optResolution[1]=optRes;
optResolution[2]=optRes;
}
else optResolution[dir]=optRes;
m_SampleType = OPT_RESOLUTION;
}
void ProcessFields::CalcMeshPos()
{
if ((m_SampleType==SUBSAMPLE) || (m_SampleType==NONE))
{
vector<unsigned int> tmp_pos;
for (int n=0; n<3; ++n)
{
// construct new discLines
tmp_pos.clear();
for (unsigned int i=start[n]; i<=stop[n]; i+=subSample[n])
tmp_pos.push_back(i);
numLines[n] = tmp_pos.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
delete[] posLines[n];
posLines[n] = new unsigned int[numLines[n]];
for (unsigned int i=0; i<numLines[n]; ++i)
{
posLines[n][i] = tmp_pos.at(i);
discLines[n][i] = Op->GetDiscLine(n,tmp_pos.at(i),m_dualMesh);
}
}
}
if ((m_SampleType==OPT_RESOLUTION))
{
vector<unsigned int> tmp_pos;
double oldPos=0;
for (int n=0; n<3; ++n)
{
// construct new discLines
tmp_pos.clear();
tmp_pos.push_back(start[n]);
oldPos=Op->GetDiscLine(n,start[n],m_dualMesh);
if (stop[n]==0)
tmp_pos.push_back(stop[n]);
else
for (unsigned int i=start[n]+1; i<=stop[n]-1; ++i)
{
if ( (Op->GetDiscLine(n,i+1,m_dualMesh)-oldPos) >= optResolution[n])
{
tmp_pos.push_back(i);
oldPos=Op->GetDiscLine(n,i,m_dualMesh);
}
}
if (start[n]!=stop[n])
tmp_pos.push_back(stop[n]);
numLines[n] = tmp_pos.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
delete[] posLines[n];
posLines[n] = new unsigned int[numLines[n]];
for (unsigned int i=0; i<numLines[n]; ++i)
{
posLines[n][i] = tmp_pos.at(i);
discLines[n][i] = Op->GetDiscLine(n,tmp_pos.at(i),m_dualMesh);
}
}
}
}
bool ProcessFields::WriteMesh2HDF5(string filename, string groupName, unsigned int const* numLines, double const* const* discLines, MeshType meshT, double discLines_scaling)
{
H5::H5File file( filename, H5F_ACC_RDWR );
H5::Group hdf_group( file.openGroup( groupName ));
string names[] = {"x","y","z"};
if (meshT==CYLINDRICAL_MESH)
{
names[0]="rho";
names[1]="alpha";
}
H5::Group* group = new H5::Group( hdf_group.createGroup( "/Mesh" ));
for (int n=0; n<3; ++n)
{
hsize_t dimsf[1]; // dataset dimensions
dimsf[0] = numLines[n];
H5::DataSpace dataspace( 1, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
H5::DataSet dataset = group->createDataSet( names[n].c_str(), datatype, dataspace );
//convert to float...
float* array = new float[numLines[n]];
for (unsigned int i=0; i<numLines[n]; ++i)
{
#ifdef OUTPUT_IN_DRAWINGUNITS
array[i] = Lines[n][i];
#else
if ((meshT==CYLINDRICAL_MESH) && (n==1)) //check for alpha-direction
array[i] = discLines[n][i];
else
array[i] = discLines[n][i] * discLines_scaling;
#endif
}
//write to dataset
dataset.write( array, H5::PredType::NATIVE_FLOAT );
delete[] array;
}
delete group;
return true;
}
bool ProcessFields::DumpVectorArray2HDF5(string filename, string groupName, string name, FDTD_FLOAT const* const* const* const* array, unsigned int const* numLines, float time)
{
const H5std_string FILE_NAME(filename);
const H5std_string DATASET_NAME( name );
H5::H5File file( FILE_NAME, H5F_ACC_RDWR );
H5::Group group( file.openGroup( groupName ));
hsize_t dimsf[4]; // dataset dimensions
dimsf[0] = 3;
dimsf[1] = numLines[2];
dimsf[2] = numLines[1];
dimsf[3] = numLines[0];
H5::DataSpace dataspace( 4, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
// datatype.setOrder( H5T_ORDER_LE );
H5::DataSet dataset = group.createDataSet( DATASET_NAME, datatype, dataspace );
hsize_t t_dimsf[] = {1};
H5::DataSpace t_dataspace( 1, t_dimsf );
H5::Attribute attr = dataset.createAttribute("time",H5::PredType::NATIVE_FLOAT,t_dataspace);
attr.write( H5::PredType::NATIVE_FLOAT , &time);
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
// at least it is save in case FDTD_FLOAT was defined as double...
// why does hdf5 write the dimensions backwards??? or matlab???
unsigned long pos = 0;
float *hdf5array = new float[3*numLines[0]*numLines[1]*numLines[2]];
for (int n=0; n<3; ++n)
{
for (unsigned int k=0; k<numLines[2]; ++k)
{
for (unsigned int j=0; j<numLines[1]; ++j)
{
for (unsigned int i=0; i<numLines[0]; ++i)
{
hdf5array[pos++] = array[n][i][j][k];
}
}
}
}
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
delete[] hdf5array;
return true;
}
bool ProcessFields:: DumpScalarArray2HDF5(string filename, string groupName, string name, FDTD_FLOAT const* const* const* array, unsigned int const* numLines, string attr_name, float attr_value)
{
const H5std_string FILE_NAME(filename);
const H5std_string DATASET_NAME( name );
H5::H5File file( FILE_NAME, H5F_ACC_RDWR );
H5::Group group( file.openGroup( groupName ));
hsize_t dimsf[3]; // dataset dimensions
dimsf[0] = numLines[2];
dimsf[1] = numLines[1];
dimsf[2] = numLines[0];
H5::DataSpace dataspace( 3, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
// datatype.setOrder( H5T_ORDER_LE );
H5::DataSet dataset = group.createDataSet( DATASET_NAME, datatype, dataspace );
if (!attr_name.empty())
{
hsize_t t_dimsf[] = {1};
H5::DataSpace t_dataspace( 1, t_dimsf );
H5::Attribute attr = dataset.createAttribute(attr_name,H5::PredType::NATIVE_FLOAT,t_dataspace);
attr.write( H5::PredType::NATIVE_FLOAT , &attr_value);
}
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
// at least it is save in case FDTD_FLOAT was defined as double...
// why does hdf5 write the dimensions backwards??? or matlab???
unsigned long pos = 0;
float *hdf5array = new float[numLines[0]*numLines[1]*numLines[2]];
for (unsigned int k=0; k<numLines[2]; ++k)
{
for (unsigned int j=0; j<numLines[1]; ++j)
{
for (unsigned int i=0; i<numLines[0]; ++i)
{
hdf5array[pos++] = array[i][j][k];
}
}
}
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
delete[] hdf5array;
return true;
}
bool ProcessFields::DumpVectorArray2HDF5(string filename, string groupName, string name, std::complex<float> const* const* const* const* array, unsigned int const* numLines, float weight, float frequency)
{
const H5std_string FILE_NAME(filename);
const H5std_string DATASET_NAME_RE( name + "_real");
const H5std_string DATASET_NAME_IM( name + "_imag");
H5::H5File file( FILE_NAME, H5F_ACC_RDWR );
H5::Group group( file.openGroup( groupName ));
hsize_t t_dimsf[] = {1};
H5::DataSpace t_dataspace( 1, t_dimsf );
hsize_t dimsf[4]; // dataset dimensions
dimsf[0] = 3;
dimsf[1] = numLines[2];
dimsf[2] = numLines[1];
dimsf[3] = numLines[0];
H5::DataSpace dataspace( 4, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
//create and write real part
H5::DataSet dataset = group.createDataSet( DATASET_NAME_RE, datatype, dataspace );
H5::Attribute attr = dataset.createAttribute("frequency",H5::PredType::NATIVE_FLOAT,t_dataspace);
attr.write( H5::PredType::NATIVE_FLOAT , &frequency);
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
// at least it is save in case FDTD_FLOAT was defined as double...
// why does hdf5 write the dimensions backwards??? or matlab???
unsigned long pos = 0;
float *hdf5array = new float[3*numLines[0]*numLines[1]*numLines[2]];
for (int n=0; n<3; ++n)
{
for (unsigned int k=0; k<numLines[2]; ++k)
{
for (unsigned int j=0; j<numLines[1]; ++j)
{
for (unsigned int i=0; i<numLines[0]; ++i)
{
hdf5array[pos++] = array[n][i][j][k].real() * weight;
}
}
}
}
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
//create and write imaginary part
dataset = group.createDataSet( DATASET_NAME_IM, datatype, dataspace );
attr = dataset.createAttribute("frequency",H5::PredType::NATIVE_FLOAT,t_dataspace);
attr.write( H5::PredType::NATIVE_FLOAT , &frequency);
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
// at least it is save in case FDTD_FLOAT was defined as double...
// why does hdf5 write the dimensions backwards??? or matlab???
pos=0;
for (int n=0; n<3; ++n)
{
for (unsigned int k=0; k<numLines[2]; ++k)
{
for (unsigned int j=0; j<numLines[1]; ++j)
{
for (unsigned int i=0; i<numLines[0]; ++i)
{
hdf5array[pos++] = array[n][i][j][k].imag() * weight;
}
}
}
}
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
delete[] hdf5array;
return true;
}
FDTD_FLOAT**** ProcessFields::CalcField()
{
unsigned int pos[3];
double out[3];
//create array
FDTD_FLOAT**** field = Create_N_3DArray<FDTD_FLOAT>(numLines);
switch (m_DumpType)
{
case E_FIELD_DUMP:
case SAR_LOCAL_DUMP:
for (unsigned int i=0; i<numLines[0]; ++i)
{
pos[0]=posLines[0][i];
for (unsigned int j=0; j<numLines[1]; ++j)
{
pos[1]=posLines[1][j];
for (unsigned int k=0; k<numLines[2]; ++k)
{
pos[2]=posLines[2][k];
m_Eng_Interface->GetEField(pos,out);
field[0][i][j][k] = out[0];
field[1][i][j][k] = out[1];
field[2][i][j][k] = out[2];
}
}
}
return field;
case H_FIELD_DUMP:
for (unsigned int i=0; i<numLines[0]; ++i)
{
pos[0]=posLines[0][i];
for (unsigned int j=0; j<numLines[1]; ++j)
{
pos[1]=posLines[1][j];
for (unsigned int k=0; k<numLines[2]; ++k)
{
pos[2]=posLines[2][k];
m_Eng_Interface->GetHField(pos,out);
field[0][i][j][k] = out[0];
field[1][i][j][k] = out[1];
field[2][i][j][k] = out[2];
}
}
}
return field;
case J_FIELD_DUMP:
for (unsigned int i=0; i<numLines[0]; ++i)
{
pos[0]=posLines[0][i];
for (unsigned int j=0; j<numLines[1]; ++j)
{
pos[1]=posLines[1][j];
for (unsigned int k=0; k<numLines[2]; ++k)
{
pos[2]=posLines[2][k];
m_Eng_Interface->GetJField(pos,out);
field[0][i][j][k] = out[0];
field[1][i][j][k] = out[1];
field[2][i][j][k] = out[2];
}
}
}
return field;
case ROTH_FIELD_DUMP:
for (unsigned int i=0; i<numLines[0]; ++i)
{
pos[0]=posLines[0][i];
for (unsigned int j=0; j<numLines[1]; ++j)
{
pos[1]=posLines[1][j];
for (unsigned int k=0; k<numLines[2]; ++k)
{
pos[2]=posLines[2][k];
m_Eng_Interface->GetRotHField(pos,out);
field[0][i][j][k] = out[0];
field[1][i][j][k] = out[1];
field[2][i][j][k] = out[2];
}
}
}
return field;
}
cerr << "ProcessFields::CalcField(): Error, unknown dump type..." << endl;
return field;
}