365 lines
16 KiB
C++
365 lines
16 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
//
|
||
|
// Copyright (C) 2020 Intel Corporation
|
||
|
|
||
|
#ifndef OPENCV_GAPI_VIDEO_HPP
|
||
|
#define OPENCV_GAPI_VIDEO_HPP
|
||
|
|
||
|
#include <utility> // std::tuple
|
||
|
|
||
|
#include <opencv2/gapi/gkernel.hpp>
|
||
|
|
||
|
|
||
|
/** \defgroup gapi_video G-API Video processing functionality
|
||
|
*/
|
||
|
|
||
|
namespace cv { namespace gapi {
|
||
|
|
||
|
/** @brief Structure for the Kalman filter's initialization parameters.*/
|
||
|
|
||
|
struct GAPI_EXPORTS KalmanParams
|
||
|
{
|
||
|
// initial state
|
||
|
|
||
|
//! corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||
|
Mat state;
|
||
|
//! posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||
|
Mat errorCov;
|
||
|
|
||
|
// dynamic system description
|
||
|
|
||
|
//! state transition matrix (A)
|
||
|
Mat transitionMatrix;
|
||
|
//! measurement matrix (H)
|
||
|
Mat measurementMatrix;
|
||
|
//! process noise covariance matrix (Q)
|
||
|
Mat processNoiseCov;
|
||
|
//! measurement noise covariance matrix (R)
|
||
|
Mat measurementNoiseCov;
|
||
|
//! control matrix (B) (Optional: not used if there's no control)
|
||
|
Mat controlMatrix;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @brief This namespace contains G-API Operations and functions for
|
||
|
* video-oriented algorithms, like optical flow and background subtraction.
|
||
|
*/
|
||
|
namespace video
|
||
|
{
|
||
|
using GBuildPyrOutput = std::tuple<GArray<GMat>, GScalar>;
|
||
|
|
||
|
using GOptFlowLKOutput = std::tuple<cv::GArray<cv::Point2f>,
|
||
|
cv::GArray<uchar>,
|
||
|
cv::GArray<float>>;
|
||
|
|
||
|
G_TYPED_KERNEL(GBuildOptFlowPyramid, <GBuildPyrOutput(GMat,Size,GScalar,bool,int,int,bool)>,
|
||
|
"org.opencv.video.buildOpticalFlowPyramid")
|
||
|
{
|
||
|
static std::tuple<GArrayDesc,GScalarDesc>
|
||
|
outMeta(GMatDesc,const Size&,GScalarDesc,bool,int,int,bool)
|
||
|
{
|
||
|
return std::make_tuple(empty_array_desc(), empty_scalar_desc());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
G_TYPED_KERNEL(GCalcOptFlowLK,
|
||
|
<GOptFlowLKOutput(GMat,GMat,cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,
|
||
|
GScalar,TermCriteria,int,double)>,
|
||
|
"org.opencv.video.calcOpticalFlowPyrLK")
|
||
|
{
|
||
|
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GMatDesc,GMatDesc,GArrayDesc,
|
||
|
GArrayDesc,const Size&,GScalarDesc,
|
||
|
const TermCriteria&,int,double)
|
||
|
{
|
||
|
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
G_TYPED_KERNEL(GCalcOptFlowLKForPyr,
|
||
|
<GOptFlowLKOutput(cv::GArray<cv::GMat>,cv::GArray<cv::GMat>,
|
||
|
cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,GScalar,
|
||
|
TermCriteria,int,double)>,
|
||
|
"org.opencv.video.calcOpticalFlowPyrLKForPyr")
|
||
|
{
|
||
|
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GArrayDesc,GArrayDesc,
|
||
|
GArrayDesc,GArrayDesc,
|
||
|
const Size&,GScalarDesc,
|
||
|
const TermCriteria&,int,double)
|
||
|
{
|
||
|
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
enum BackgroundSubtractorType
|
||
|
{
|
||
|
TYPE_BS_MOG2,
|
||
|
TYPE_BS_KNN
|
||
|
};
|
||
|
|
||
|
/** @brief Structure for the Background Subtractor operation's initialization parameters.*/
|
||
|
|
||
|
struct BackgroundSubtractorParams
|
||
|
{
|
||
|
//! Type of the Background Subtractor operation.
|
||
|
BackgroundSubtractorType operation = TYPE_BS_MOG2;
|
||
|
|
||
|
//! Length of the history.
|
||
|
int history = 500;
|
||
|
|
||
|
//! For MOG2: Threshold on the squared Mahalanobis distance between the pixel
|
||
|
//! and the model to decide whether a pixel is well described by
|
||
|
//! the background model.
|
||
|
//! For KNN: Threshold on the squared distance between the pixel and the sample
|
||
|
//! to decide whether a pixel is close to that sample.
|
||
|
double threshold = 16;
|
||
|
|
||
|
//! If true, the algorithm will detect shadows and mark them.
|
||
|
bool detectShadows = true;
|
||
|
|
||
|
//! The value between 0 and 1 that indicates how fast
|
||
|
//! the background model is learnt.
|
||
|
//! Negative parameter value makes the algorithm use some automatically
|
||
|
//! chosen learning rate.
|
||
|
double learningRate = -1;
|
||
|
|
||
|
//! default constructor
|
||
|
BackgroundSubtractorParams() {}
|
||
|
|
||
|
/** Full constructor
|
||
|
@param op MOG2/KNN Background Subtractor type.
|
||
|
@param histLength Length of the history.
|
||
|
@param thrshld For MOG2: Threshold on the squared Mahalanobis distance between
|
||
|
the pixel and the model to decide whether a pixel is well described by the background model.
|
||
|
For KNN: Threshold on the squared distance between the pixel and the sample to decide
|
||
|
whether a pixel is close to that sample.
|
||
|
@param detect If true, the algorithm will detect shadows and mark them. It decreases the
|
||
|
speed a bit, so if you do not need this feature, set the parameter to false.
|
||
|
@param lRate The value between 0 and 1 that indicates how fast the background model is learnt.
|
||
|
Negative parameter value makes the algorithm to use some automatically chosen learning rate.
|
||
|
*/
|
||
|
BackgroundSubtractorParams(BackgroundSubtractorType op, int histLength,
|
||
|
double thrshld, bool detect, double lRate) : operation(op),
|
||
|
history(histLength),
|
||
|
threshold(thrshld),
|
||
|
detectShadows(detect),
|
||
|
learningRate(lRate){}
|
||
|
};
|
||
|
|
||
|
G_TYPED_KERNEL(GBackgroundSubtractor, <GMat(GMat, BackgroundSubtractorParams)>,
|
||
|
"org.opencv.video.BackgroundSubtractor")
|
||
|
{
|
||
|
static GMatDesc outMeta(const GMatDesc& in, const BackgroundSubtractorParams& bsParams)
|
||
|
{
|
||
|
GAPI_Assert(bsParams.history >= 0);
|
||
|
GAPI_Assert(bsParams.learningRate <= 1);
|
||
|
return in.withType(CV_8U, 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
void checkParams(const cv::gapi::KalmanParams& kfParams,
|
||
|
const cv::GMatDesc& measurement, const cv::GMatDesc& control = {});
|
||
|
|
||
|
G_TYPED_KERNEL(GKalmanFilter, <GMat(GMat, GOpaque<bool>, GMat, KalmanParams)>,
|
||
|
"org.opencv.video.KalmanFilter")
|
||
|
{
|
||
|
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&,
|
||
|
const GMatDesc& control, const KalmanParams& kfParams)
|
||
|
{
|
||
|
checkParams(kfParams, measurement, control);
|
||
|
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
G_TYPED_KERNEL(GKalmanFilterNoControl, <GMat(GMat, GOpaque<bool>, KalmanParams)>, "org.opencv.video.KalmanFilterNoControl")
|
||
|
{
|
||
|
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&, const KalmanParams& kfParams)
|
||
|
{
|
||
|
checkParams(kfParams, measurement);
|
||
|
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
|
||
|
}
|
||
|
};
|
||
|
} //namespace video
|
||
|
|
||
|
//! @addtogroup gapi_video
|
||
|
//! @{
|
||
|
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
|
||
|
|
||
|
@note Function textual ID is "org.opencv.video.buildOpticalFlowPyramid"
|
||
|
|
||
|
@param img 8-bit input image.
|
||
|
@param winSize window size of optical flow algorithm. Must be not less than winSize
|
||
|
argument of calcOpticalFlowPyrLK. It is needed to calculate required
|
||
|
padding for pyramid levels.
|
||
|
@param maxLevel 0-based maximal pyramid level number.
|
||
|
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
|
||
|
constructed without the gradients then calcOpticalFlowPyrLK will calculate
|
||
|
them internally.
|
||
|
@param pyrBorder the border mode for pyramid layers.
|
||
|
@param derivBorder the border mode for gradients.
|
||
|
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
|
||
|
to force data copying.
|
||
|
|
||
|
@return
|
||
|
- output pyramid.
|
||
|
- number of levels in constructed pyramid. Can be less than maxLevel.
|
||
|
*/
|
||
|
GAPI_EXPORTS std::tuple<GArray<GMat>, GScalar>
|
||
|
buildOpticalFlowPyramid(const GMat &img,
|
||
|
const Size &winSize,
|
||
|
const GScalar &maxLevel,
|
||
|
bool withDerivatives = true,
|
||
|
int pyrBorder = BORDER_REFLECT_101,
|
||
|
int derivBorder = BORDER_CONSTANT,
|
||
|
bool tryReuseInputImage = true);
|
||
|
|
||
|
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade
|
||
|
method with pyramids.
|
||
|
|
||
|
See @cite Bouguet00 .
|
||
|
|
||
|
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLK"
|
||
|
|
||
|
@param prevImg first 8-bit input image (GMat) or pyramid (GArray<GMat>) constructed by
|
||
|
buildOpticalFlowPyramid.
|
||
|
@param nextImg second input image (GMat) or pyramid (GArray<GMat>) of the same size and the same
|
||
|
type as prevImg.
|
||
|
@param prevPts GArray of 2D points for which the flow needs to be found; point coordinates must be
|
||
|
single-precision floating-point numbers.
|
||
|
@param predPts GArray of 2D points initial for the flow search; make sense only when
|
||
|
OPTFLOW_USE_INITIAL_FLOW flag is passed; in that case the vector must have the same size as in
|
||
|
the input.
|
||
|
@param winSize size of the search window at each pyramid level.
|
||
|
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
|
||
|
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
|
||
|
algorithm will use as many levels as pyramids have but no more than maxLevel.
|
||
|
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
|
||
|
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
||
|
moves by less than criteria.epsilon).
|
||
|
@param flags operation flags:
|
||
|
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||
|
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
||
|
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
|
||
|
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
||
|
around the original and a moved point, divided by number of pixels in a window, is used as a
|
||
|
error measure.
|
||
|
@param minEigThresh the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
|
||
|
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
|
||
|
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
|
||
|
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
|
||
|
performance boost.
|
||
|
|
||
|
@return
|
||
|
- GArray of 2D points (with single-precision floating-point coordinates)
|
||
|
containing the calculated new positions of input features in the second image.
|
||
|
- status GArray (of unsigned chars); each element of the vector is set to 1 if
|
||
|
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
||
|
- GArray of errors (doubles); each element of the vector is set to an error for the
|
||
|
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
|
||
|
found then the error is not defined (use the status parameter to find such cases).
|
||
|
*/
|
||
|
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
|
||
|
calcOpticalFlowPyrLK(const GMat &prevImg,
|
||
|
const GMat &nextImg,
|
||
|
const GArray<Point2f> &prevPts,
|
||
|
const GArray<Point2f> &predPts,
|
||
|
const Size &winSize = Size(21, 21),
|
||
|
const GScalar &maxLevel = 3,
|
||
|
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
|
||
|
TermCriteria::EPS,
|
||
|
30, 0.01),
|
||
|
int flags = 0,
|
||
|
double minEigThresh = 1e-4);
|
||
|
|
||
|
/**
|
||
|
@overload
|
||
|
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLKForPyr"
|
||
|
*/
|
||
|
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
|
||
|
calcOpticalFlowPyrLK(const GArray<GMat> &prevPyr,
|
||
|
const GArray<GMat> &nextPyr,
|
||
|
const GArray<Point2f> &prevPts,
|
||
|
const GArray<Point2f> &predPts,
|
||
|
const Size &winSize = Size(21, 21),
|
||
|
const GScalar &maxLevel = 3,
|
||
|
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
|
||
|
TermCriteria::EPS,
|
||
|
30, 0.01),
|
||
|
int flags = 0,
|
||
|
double minEigThresh = 1e-4);
|
||
|
|
||
|
/** @brief Gaussian Mixture-based or K-nearest neighbours-based Background/Foreground Segmentation Algorithm.
|
||
|
The operation generates a foreground mask.
|
||
|
|
||
|
@return Output image is foreground mask, i.e. 8-bit unsigned 1-channel (binary) matrix @ref CV_8UC1.
|
||
|
|
||
|
@note Functional textual ID is "org.opencv.video.BackgroundSubtractor"
|
||
|
|
||
|
@param src input image: Floating point frame is used without scaling and should be in range [0,255].
|
||
|
@param bsParams Set of initialization parameters for Background Subtractor kernel.
|
||
|
*/
|
||
|
GAPI_EXPORTS GMat BackgroundSubtractor(const GMat& src, const cv::gapi::video::BackgroundSubtractorParams& bsParams);
|
||
|
|
||
|
/** @brief Standard Kalman filter algorithm <http://en.wikipedia.org/wiki/Kalman_filter>.
|
||
|
|
||
|
@note Functional textual ID is "org.opencv.video.KalmanFilter"
|
||
|
|
||
|
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
|
||
|
@param haveMeasurement dynamic input flag that indicates whether we get measurements
|
||
|
at a particular iteration .
|
||
|
@param control input matrix: 32-bit or 64-bit float 1-channel matrix contains control data
|
||
|
for changing dynamic system.
|
||
|
@param kfParams Set of initialization parameters for Kalman filter kernel.
|
||
|
|
||
|
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
|
||
|
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
|
||
|
|
||
|
@details If measurement matrix is given (haveMeasurements == true), corrected state will
|
||
|
be returned which corresponds to the pipeline
|
||
|
cv::KalmanFilter::predict(control) -> cv::KalmanFilter::correct(measurement).
|
||
|
Otherwise, predicted state will be returned which corresponds to the call of
|
||
|
cv::KalmanFilter::predict(control).
|
||
|
@sa cv::KalmanFilter
|
||
|
*/
|
||
|
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
|
||
|
const GMat& control, const cv::gapi::KalmanParams& kfParams);
|
||
|
|
||
|
/** @overload
|
||
|
The case of Standard Kalman filter algorithm when there is no control in a dynamic system.
|
||
|
In this case the controlMatrix is empty and control vector is absent.
|
||
|
|
||
|
@note Function textual ID is "org.opencv.video.KalmanFilterNoControl"
|
||
|
|
||
|
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
|
||
|
@param haveMeasurement dynamic input flag that indicates whether we get measurements
|
||
|
at a particular iteration.
|
||
|
@param kfParams Set of initialization parameters for Kalman filter kernel.
|
||
|
|
||
|
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
|
||
|
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
|
||
|
|
||
|
@sa cv::KalmanFilter
|
||
|
*/
|
||
|
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
|
||
|
const cv::gapi::KalmanParams& kfParams);
|
||
|
|
||
|
//! @} gapi_video
|
||
|
} //namespace gapi
|
||
|
} //namespace cv
|
||
|
|
||
|
|
||
|
namespace cv { namespace detail {
|
||
|
template<> struct CompileArgTag<cv::gapi::video::BackgroundSubtractorParams>
|
||
|
{
|
||
|
static const char* tag()
|
||
|
{
|
||
|
return "org.opencv.video.background_substractor_params";
|
||
|
}
|
||
|
};
|
||
|
} // namespace detail
|
||
|
} // namespace cv
|
||
|
|
||
|
#endif // OPENCV_GAPI_VIDEO_HPP
|