opencv_mv/QMainPro/QMacVisual/include/opencv2/dnn/dnn.hpp

1760 lines
84 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_HPP
#define OPENCV_DNN_DNN_HPP
#include <vector>
#include <opencv2/core.hpp>
#include "opencv2/core/async.hpp"
#include "../dnn/version.hpp"
#include <opencv2/dnn/dict.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
typedef std::vector<int> MatShape;
/**
* @brief Enum of computation backends supported by layers.
* @see Net::setPreferableBackend
*/
enum Backend
{
//! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
//! OpenCV is built with Intel's Inference Engine library or
//! DNN_BACKEND_OPENCV otherwise.
DNN_BACKEND_DEFAULT = 0,
DNN_BACKEND_HALIDE,
DNN_BACKEND_INFERENCE_ENGINE, //!< Intel's Inference Engine computational backend
//!< @sa setInferenceEngineBackendType
DNN_BACKEND_OPENCV,
DNN_BACKEND_VKCOM,
DNN_BACKEND_CUDA,
DNN_BACKEND_WEBNN,
DNN_BACKEND_TIMVX,
#ifdef __OPENCV_BUILD
DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
#endif
};
/**
* @brief Enum of target devices for computations.
* @see Net::setPreferableTarget
*/
enum Target
{
DNN_TARGET_CPU = 0,
DNN_TARGET_OPENCL,
DNN_TARGET_OPENCL_FP16,
DNN_TARGET_MYRIAD,
DNN_TARGET_VULKAN,
DNN_TARGET_FPGA, //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
DNN_TARGET_CUDA,
DNN_TARGET_CUDA_FP16,
DNN_TARGET_HDDL,
DNN_TARGET_NPU,
};
CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be);
/**
* @brief Enables detailed logging of the DNN model loading with CV DNN API.
* @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set.
*
* Diagnostic mode provides detailed logging of the model loading stage to explore
* potential problems (ex.: not implemented layer type).
*
* @note In diagnostic mode series of assertions will be skipped, it can lead to the
* expected application crash.
*/
CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode);
/** @brief This class provides all data needed to initialize layer.
*
* It includes dictionary with scalar params (which can be read by using Dict interface),
* blob params #blobs and optional meta information: #name and #type of layer instance.
*/
class CV_EXPORTS LayerParams : public Dict
{
public:
//TODO: Add ability to name blob params
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
String name; //!< Name of the layer instance (optional, can be used internal purposes).
String type; //!< Type name which was used for creating layer by layer factory (optional).
};
/**
* @brief Derivatives of this class encapsulates functions of certain backends.
*/
class BackendNode
{
public:
explicit BackendNode(int backendId);
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
int backendId; //!< Backend identifier.
};
/**
* @brief Derivatives of this class wraps cv::Mat for different backends and targets.
*/
class BackendWrapper
{
public:
BackendWrapper(int backendId, int targetId);
/**
* @brief Wrap cv::Mat for specific backend and target.
* @param[in] targetId Target identifier.
* @param[in] m cv::Mat for wrapping.
*
* Make CPU->GPU data transfer if it's require for the target.
*/
BackendWrapper(int targetId, const cv::Mat& m);
/**
* @brief Make wrapper for reused cv::Mat.
* @param[in] base Wrapper of cv::Mat that will be reused.
* @param[in] shape Specific shape.
*
* Initialize wrapper from another one. It'll wrap the same host CPU
* memory and mustn't allocate memory on device(i.e. GPU). It might
* has different shape. Use in case of CPU memory reusing for reuse
* associated memory on device too.
*/
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
/**
* @brief Transfer data to CPU host memory.
*/
virtual void copyToHost() = 0;
/**
* @brief Indicate that an actual data is on CPU.
*/
virtual void setHostDirty() = 0;
int backendId; //!< Backend identifier.
int targetId; //!< Target identifier.
};
class CV_EXPORTS ActivationLayer;
/** @brief This interface class allows to build new Layers - are building blocks of networks.
*
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
*/
class CV_EXPORTS_W Layer : public Algorithm
{
public:
//! List of learned parameters must be stored here to allow read them by using Net::getParam().
CV_PROP_RW std::vector<Mat> blobs;
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
* @param[in] input vector of already allocated input blobs
* @param[out] output vector of already allocated output blobs
*
* If this method is called after network has allocated all memory for input and output blobs
* and before inferencing.
*/
CV_DEPRECATED_EXTERNAL
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
* @param[in] inputs vector of already allocated input blobs
* @param[out] outputs vector of already allocated output blobs
*
* If this method is called after network has allocated all memory for input and output blobs
* and before inferencing.
*/
CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
/** @brief Given the @p input blobs, computes the output @p blobs.
* @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
* @param[in] input the input blobs.
* @param[out] output allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
CV_DEPRECATED_EXTERNAL
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
/** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation.
* @param[in] scales input and output scales.
* @param[in] zeropoints input and output zeropoints.
* @param[out] params Quantized parameters required for fixed point implementation of that layer.
* @returns True if layer can be quantized.
*/
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params);
/** @brief Given the @p input blobs, computes the output @p blobs.
* @param[in] inputs the input blobs.
* @param[out] outputs allocated output blobs, which will store results of the computation.
* @param[out] internals allocated internal blobs
*/
void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
/** @brief
* @overload
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
*/
CV_DEPRECATED_EXTERNAL
void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
/** @brief
* @overload
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
*/
CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
/** @brief Allocates layer and computes output.
* @deprecated This method will be removed in the future release.
*/
CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
CV_IN_OUT std::vector<Mat> &internals);
/** @brief Returns index of input blob into the input array.
* @param inputName label of input blob
*
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
* This method maps label of input blob to its index into input vector.
*/
virtual int inputNameToIndex(String inputName); // FIXIT const
/** @brief Returns index of output blob in output array.
* @see inputNameToIndex()
*/
CV_WRAP virtual int outputNameToIndex(const String& outputName); // FIXIT const
/**
* @brief Ask layer if it support specific backend for doing computations.
* @param[in] backendId computation backend identifier.
* @see Backend
*/
virtual bool supportBackend(int backendId); // FIXIT const
/**
* @brief Returns Halide backend node.
* @param[in] inputs Input Halide buffers.
* @see BackendNode, BackendWrapper
*
* Input buffers should be exactly the same that will be used in forward invocations.
* Despite we can use Halide::ImageParam based on input shape only,
* it helps prevent some memory management issues (if something wrong,
* Halide tests will be failed).
*/
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs);
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
/**
* @brief Returns a CUDA backend node
*
* @param context void pointer to CSLContext object
* @param inputs layer inputs
* @param outputs layer outputs
*/
virtual Ptr<BackendNode> initCUDA(
void *context,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
);
/**
* @brief Returns a TimVX backend node
*
* @param timVxInfo void pointer to CSLContext object
* @param inputsWrapper layer inputs
* @param outputsWrapper layer outputs
* @param isLast if the node is the last one of the TimVX Graph.
*/
virtual Ptr<BackendNode> initTimVX(void* timVxInfo,
const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
bool isLast);
/**
* @brief Automatic Halide scheduling based on layer hyper-parameters.
* @param[in] node Backend node with Halide functions.
* @param[in] inputs Blobs that will be used in forward invocations.
* @param[in] outputs Blobs that will be used in forward invocations.
* @param[in] targetId Target identifier
* @see BackendNode, Target
*
* Layer don't use own Halide::Func members because we can have applied
* layers fusing. In this way the fused function should be scheduled.
*/
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const;
/**
* @brief Implement layers fusing.
* @param[in] node Backend node of bottom layer.
* @see BackendNode
*
* Actual for graph-based backends. If layer attached successfully,
* returns non-empty cv::Ptr to node of the same backend.
* Fuse only over the last function.
*/
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
/**
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
* @param[in] layer The subsequent activation layer.
*
* Returns true if the activation layer has been attached successfully.
*/
virtual bool setActivation(const Ptr<ActivationLayer>& layer);
/**
* @brief Try to fuse current layer with a next one
* @param[in] top Next layer to be fused.
* @returns True if fusion was performed.
*/
virtual bool tryFuse(Ptr<Layer>& top);
/**
* @brief Returns parameters of layers with channel-wise multiplication and addition.
* @param[out] scale Channel-wise multipliers. Total number of values should
* be equal to number of channels.
* @param[out] shift Channel-wise offsets. Total number of values should
* be equal to number of channels.
*
* Some layers can fuse their transformations with further layers.
* In example, convolution + batch normalization. This way base layer
* use weights from layer after it. Fused layer is skipped.
* By default, @p scale and @p shift are empty that means layer has no
* element-wise multiplications or additions.
*/
virtual void getScaleShift(Mat& scale, Mat& shift) const;
/**
* @brief Returns scale and zeropoint of layers
* @param[out] scale Output scale
* @param[out] zeropoint Output zeropoint
*
* By default, @p scale is 1 and @p zeropoint is 0.
*/
virtual void getScaleZeropoint(float& scale, int& zeropoint) const;
/**
* @brief "Detaches" all the layers, attached to particular layer.
*/
virtual void unsetAttached();
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const;
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
CV_PROP int preferableTarget; //!< prefer target for layer forwarding
Layer();
explicit Layer(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
void setParamsFrom(const LayerParams &params); //!< Initializes only #name, #type and #blobs fields.
virtual ~Layer();
};
/** @brief This class allows to create and manipulate comprehensive artificial neural networks.
*
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
* and edges specify relationships between layers inputs and outputs.
*
* Each network layer has unique integer id and unique string name inside its network.
* LayerId can store either layer name or layer id.
*
* This class supports reference counting of its instances, i. e. copies point to the same instance.
*/
class CV_EXPORTS_W_SIMPLE Net
{
public:
CV_WRAP Net(); //!< Default constructor.
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
/** @brief Create a network from Intel's Model Optimizer intermediate representation (IR).
* @param[in] xml XML configuration file with network's topology.
* @param[in] bin Binary file with trained weights.
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
* backend.
*/
CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
/** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
* @param[in] bufferModelConfig buffer with model's configuration.
* @param[in] bufferWeights buffer with model's trained weights.
* @returns Net object.
*/
CV_WRAP static
Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
/** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
* @param[in] bufferModelConfigPtr buffer pointer of model's configuration.
* @param[in] bufferModelConfigSize buffer size of model's configuration.
* @param[in] bufferWeightsPtr buffer pointer of model's trained weights.
* @param[in] bufferWeightsSize buffer size of model's trained weights.
* @returns Net object.
*/
static
Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
/** Returns true if there are no layers in the network. */
CV_WRAP bool empty() const;
/** @brief Dump net to String
* @returns String with structure, hyperparameters, backend, target and fusion
* Call method after setInput(). To see correct backend, target and fusion run after forward().
*/
CV_WRAP String dump();
/** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file
* @param path path to output file with .dot extension
* @see dump()
*/
CV_WRAP void dumpToFile(const String& path);
/** @brief Adds new layer to the net.
* @param name unique name of the adding layer.
* @param type typename of the adding layer (type must be registered in LayerRegister).
* @param dtype datatype of output blobs.
* @param params parameters which will be used to initialize the creating layer.
* @returns unique identifier of created layer, or -1 if a failure will happen.
*/
int addLayer(const String &name, const String &type, const int &dtype, LayerParams &params);
/** @overload Datatype of output blobs set to default CV_32F */
int addLayer(const String &name, const String &type, LayerParams &params);
/** @brief Adds new layer and connects its first input to the first output of previously added layer.
* @see addLayer()
*/
int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams &params);
/** @overload */
int addLayerToPrev(const String &name, const String &type, LayerParams &params);
/** @brief Converts string name of the layer to the integer identifier.
* @returns id of the layer, or -1 if the layer wasn't found.
*/
CV_WRAP int getLayerId(const String &layer) const;
CV_WRAP std::vector<String> getLayerNames() const;
/** @brief Container for strings and integers.
*
* @deprecated Use getLayerId() with int result.
*/
typedef DictValue LayerId;
/** @brief Returns pointer to layer with specified id or name which the network use. */
CV_WRAP Ptr<Layer> getLayer(int layerId) const;
/** @overload
* @deprecated Use int getLayerId(const String &layer)
*/
CV_WRAP inline Ptr<Layer> getLayer(const String& layerName) const { return getLayer(getLayerId(layerName)); }
/** @overload
* @deprecated to be removed
*/
CV_WRAP Ptr<Layer> getLayer(const LayerId& layerId) const;
/** @brief Returns pointers to input layers of specific layer. */
std::vector<Ptr<Layer> > getLayerInputs(int layerId) const; // FIXIT: CV_WRAP
/** @brief Connects output of the first layer to input of the second layer.
* @param outPin descriptor of the first layer output.
* @param inpPin descriptor of the second layer input.
*
* Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
* - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
* If this part is empty then the network input pseudo layer will be used;
* - the second optional part of the template <DFN>input_number</DFN>
* is either number of the layer input, either label one.
* If this part is omitted then the first layer input will be used.
*
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
*/
CV_WRAP void connect(String outPin, String inpPin);
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
* @param outLayerId identifier of the first layer
* @param outNum number of the first layer output
* @param inpLayerId identifier of the second layer
* @param inpNum number of the second layer input
*/
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
/** @brief Registers network output with name
*
* Function may create additional 'Identity' layer.
*
* @param outputName identifier of the output
* @param layerId identifier of the second layer
* @param outputPort number of the second layer input
*
* @returns index of bound layer (the same as layerId or newly created)
*/
int registerOutput(const std::string& outputName, int layerId, int outputPort);
/** @brief Sets outputs names of the network input pseudo layer.
*
* Each net always has special own the network input pseudo layer with id=0.
* This layer stores the user blobs only and don't make any computations.
* In fact, this layer provides the only way to pass user data into the network.
* As any other layer, this layer can label its outputs and this function provides an easy way to do this.
*/
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
/** @brief Specify shape of network input.
*/
CV_WRAP void setInputShape(const String &inputName, const MatShape& shape);
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @return blob for first output of specified layer.
* @details By default runs forward pass for the whole network.
*/
CV_WRAP Mat forward(const String& outputName = String());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputName name for layer which output is needed to get
* @details By default runs forward pass for the whole network.
*
* This is an asynchronous version of forward(const String&).
* dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
*/
CV_WRAP AsyncArray forwardAsync(const String& outputName = String());
/** @brief Runs forward pass to compute output of layer with name @p outputName.
* @param outputBlobs contains all output blobs for specified layer.
* @param outputName name for layer which output is needed to get
* @details If @p outputName is empty, runs forward pass for the whole network.
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains blobs for first outputs of specified layers.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames);
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
* @param outBlobNames names for layers which outputs are needed to get
*/
CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
const std::vector<String>& outBlobNames);
/** @brief Returns a quantized Net from a floating-point Net.
* @param calibData Calibration data to compute the quantization parameters.
* @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
* @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
*/
CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype);
/** @brief Returns input scale and zeropoint for a quantized Net.
* @param scales output parameter for returning input scales.
* @param zeropoints output parameter for returning input zeropoints.
*/
CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
/** @brief Returns output scale and zeropoint for a quantized Net.
* @param scales output parameter for returning output scales.
* @param zeropoints output parameter for returning output zeropoints.
*/
CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
/**
* @brief Compile Halide layers.
* @param[in] scheduler Path to YAML file with scheduling directives.
* @see setPreferableBackend
*
* Schedule layers that support Halide backend. Then compile them for
* specific target. For layers that not represented in scheduling file
* or if no manual scheduling used at all, automatic scheduling will be applied.
*/
CV_WRAP void setHalideScheduler(const String& scheduler);
/**
* @brief Ask network to use specific computation backend where it supported.
* @param[in] backendId backend identifier.
* @see Backend
*
* If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
* means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
*/
CV_WRAP void setPreferableBackend(int backendId);
/**
* @brief Ask network to make computations on specific target device.
* @param[in] targetId target identifier.
* @see Target
*
* List of supported combinations backend / target:
* | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA |
* |------------------------|--------------------|------------------------------|--------------------|-------------------|
* | DNN_TARGET_CPU | + | + | + | |
* | DNN_TARGET_OPENCL | + | + | + | |
* | DNN_TARGET_OPENCL_FP16 | + | + | | |
* | DNN_TARGET_MYRIAD | | + | | |
* | DNN_TARGET_FPGA | | + | | |
* | DNN_TARGET_CUDA | | | | + |
* | DNN_TARGET_CUDA_FP16 | | | | + |
* | DNN_TARGET_HDDL | | + | | |
*/
CV_WRAP void setPreferableTarget(int targetId);
/** @brief Sets the new input value for the network
* @param blob A new blob. Should have CV_32F or CV_8U depth.
* @param name A name of input layer.
* @param scalefactor An optional normalization scale.
* @param mean An optional mean subtraction values.
* @see connect(String, String) to know format of the descriptor.
*
* If scale or mean values are specified, a final input blob is computed
* as:
* \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
*/
CV_WRAP void setInput(InputArray blob, const String& name = "",
double scalefactor = 1.0, const Scalar& mean = Scalar());
/** @brief Sets the new value for the learned param of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @param blob the new value.
* @see Layer::blobs
* @note If shape of the new blob differs from the previous shape,
* then the following forward pass may fail.
*/
CV_WRAP void setParam(int layer, int numParam, const Mat &blob);
CV_WRAP inline void setParam(const String& layerName, int numParam, const Mat &blob) { return setParam(getLayerId(layerName), numParam, blob); }
/** @brief Returns parameter blob of the layer.
* @param layer name or id of the layer.
* @param numParam index of the layer parameter in the Layer::blobs array.
* @see Layer::blobs
*/
CV_WRAP Mat getParam(int layer, int numParam = 0) const;
CV_WRAP inline Mat getParam(const String& layerName, int numParam = 0) const { return getParam(getLayerId(layerName), numParam); }
/** @brief Returns indexes of layers with unconnected outputs.
*
* FIXIT: Rework API to registerOutput() approach, deprecate this call
*/
CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
/** @brief Returns names of layers with unconnected outputs.
*
* FIXIT: Rework API to registerOutput() approach, deprecate this call
*/
CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
/** @brief Returns input and output shapes for all layers in loaded model;
* preliminary inferencing isn't necessary.
* @param netInputShapes shapes for all input blobs in net input layer.
* @param layersIds output parameter for layer IDs.
* @param inLayersShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayersShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @overload */
CV_WRAP void getLayersShapes(const MatShape& netInputShape,
CV_OUT std::vector<int>& layersIds,
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
/** @brief Returns input and output shapes for layer with specified
* id in loaded model; preliminary inferencing isn't necessary.
* @param netInputShape shape input blob in net input layer.
* @param layerId id for layer.
* @param inLayerShapes output parameter for input layers shapes;
* order is the same as in layersIds
* @param outLayerShapes output parameter for output layers shapes;
* order is the same as in layersIds
*/
void getLayerShapes(const MatShape& netInputShape,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @overload */
void getLayerShapes(const std::vector<MatShape>& netInputShapes,
const int layerId,
CV_OUT std::vector<MatShape>& inLayerShapes,
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
/** @brief Computes FLOP for whole loaded model with specified input shapes.
* @param netInputShapes vector of shapes for all net inputs.
* @returns computed FLOP.
*/
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const;
/** @overload */
CV_WRAP int64 getFLOPS(const int layerId,
const MatShape& netInputShape) const;
/** @brief Returns list of types for layer used in model.
* @param layersTypes output parameter for returning types.
*/
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
/** @brief Returns count of layers of specified type.
* @param layerType type.
* @returns count of layers
*/
CV_WRAP int getLayersCount(const String& layerType) const;
/** @brief Computes bytes number which are required to store
* all weights and intermediate blobs for model.
* @param netInputShapes vector of shapes for all net inputs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
/** @overload */
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @overload */
CV_WRAP void getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
/** @brief Computes bytes number which are required to store
* all weights and intermediate blobs for each layer.
* @param netInputShapes vector of shapes for all net inputs.
* @param layerIds output vector to save layer IDs.
* @param weights output parameter to store resulting bytes for weights.
* @param blobs output parameter to store resulting bytes for intermediate blobs.
*/
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @overload */
void getMemoryConsumption(const MatShape& netInputShape,
CV_OUT std::vector<int>& layerIds,
CV_OUT std::vector<size_t>& weights,
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
/** @brief Enables or disables layer fusion in the network.
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
*/
CV_WRAP void enableFusion(bool fusion);
/** @brief Returns overall time for inference and timings (in ticks) for layers.
*
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
* in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
*
* @param[out] timings vector for tick timings for all layers.
* @return overall ticks for model inference.
*/
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
private:
struct Impl;
Ptr<Impl> impl;
};
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param cfgFile path to the .cfg file with text description of the network architecture.
* @param darknetModel path to the .weights file with learned network.
* @returns Network object that ready to do forward, throw an exception in failure cases.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
* @param bufferModel A buffer contains a content of .weights file with learned network.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
const std::vector<uchar>& bufferModel = std::vector<uchar>());
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
* @param lenCfg Number of bytes to read from bufferCfg
* @param bufferModel A buffer contains a content of .weights file with learned network.
* @param lenModel Number of bytes to read from bufferModel
* @returns Net object.
*/
CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
const char *bufferModel = NULL, size_t lenModel = 0);
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
* @param prototxt path to the .prototxt file with text description of the network architecture.
* @param caffeModel path to the .caffemodel file with learned network.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
/** @brief Reads a network model stored in Caffe model in memory.
* @param bufferProto buffer containing the content of the .prototxt file
* @param bufferModel buffer containing the content of the .caffemodel file
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
const std::vector<uchar>& bufferModel = std::vector<uchar>());
/** @brief Reads a network model stored in Caffe model in memory.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferProto buffer containing the content of the .prototxt file
* @param lenProto length of bufferProto
* @param bufferModel buffer containing the content of the .caffemodel file
* @param lenModel length of bufferModel
* @returns Net object.
*/
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
const char *bufferModel = NULL, size_t lenModel = 0);
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @param model path to the .pb file with binary protobuf description of the network architecture
* @param config path to the .pbtxt file that contains text graph definition in protobuf format.
* Resulting Net object is built by text graph using weights from a binary one that
* let us make it more flexible.
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @param bufferModel buffer containing the content of the pb file
* @param bufferConfig buffer containing the content of the pbtxt file
* @returns Net object.
*/
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
const std::vector<uchar>& bufferConfig = std::vector<uchar>());
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param bufferModel buffer containing the content of the pb file
* @param lenModel length of bufferModel
* @param bufferConfig buffer containing the content of the pbtxt file
* @param lenConfig length of bufferConfig
*/
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
const char *bufferConfig = NULL, size_t lenConfig = 0);
/**
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
* @param model path to the file, dumped from Torch by using torch.save() function.
* @param isBinary specifies whether the network was serialized in ascii mode or binary.
* @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
* @returns Net object.
*
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
* which has various bit-length on different systems.
*
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
*
* List of supported layers (i.e. object instances derived from Torch nn.Module class):
* - nn.Sequential
* - nn.Parallel
* - nn.Concat
* - nn.Linear
* - nn.SpatialConvolution
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling
* - nn.ReLU, nn.TanH, nn.Sigmoid
* - nn.Reshape
* - nn.SoftMax, nn.LogSoftMax
*
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
*/
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
/**
* @brief Read deep learning network represented in one of the supported formats.
* @param[in] model Binary file contains trained weights. The following file
* extensions are expected for models from different frameworks:
* * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
* * `*.pb` (TensorFlow, https://www.tensorflow.org/)
* * `*.t7` | `*.net` (Torch, http://torch.ch/)
* * `*.weights` (Darknet, https://pjreddie.com/darknet/)
* * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
* * `*.onnx` (ONNX, https://onnx.ai/)
* @param[in] config Text file contains network configuration. It could be a
* file with the following extensions:
* * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
* * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
* * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
* * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
* @param[in] framework Explicit framework name tag to determine a format.
* @returns Net object.
*
* This function automatically detects an origin framework of trained model
* and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
* @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
* arguments does not matter.
*/
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
/**
* @brief Read deep learning network represented in one of the supported formats.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
* @param[in] framework Name of origin framework.
* @param[in] bufferModel A buffer with a content of binary file with weights
* @param[in] bufferConfig A buffer with a content of text file contains network configuration.
* @returns Net object.
*/
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
const std::vector<uchar>& bufferConfig = std::vector<uchar>());
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
* @warning This function has the same limitations as readNetFromTorch().
*/
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
/** @brief Load a network from Intel's Model Optimizer intermediate representation.
* @param[in] xml XML configuration file with network's topology.
* @param[in] bin Binary file with trained weights.
* @returns Net object.
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
* backend.
*/
CV_EXPORTS_W
Net readNetFromModelOptimizer(const String &xml, const String &bin);
/** @brief Load a network from Intel's Model Optimizer intermediate representation.
* @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
* @param[in] bufferWeights Buffer contains binary data with trained weights.
* @returns Net object.
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
* backend.
*/
CV_EXPORTS_W
Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
/** @brief Load a network from Intel's Model Optimizer intermediate representation.
* @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology.
* @param[in] bufferModelConfigSize Binary size of XML configuration data.
* @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights.
* @param[in] bufferWeightsSize Binary size of trained weights data.
* @returns Net object.
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
* backend.
*/
CV_EXPORTS
Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
/** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
* @param onnxFile path to the .onnx file with text description of the network architecture.
* @returns Network object that ready to do forward, throw an exception in failure cases.
*/
CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
/** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
* in-memory buffer.
* @param buffer memory address of the first byte of the buffer.
* @param sizeBuffer size of the buffer.
* @returns Network object that ready to do forward, throw an exception
* in failure cases.
*/
CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer);
/** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
* in-memory buffer.
* @param buffer in-memory buffer that stores the ONNX model bytes.
* @returns Network object that ready to do forward, throw an exception
* in failure cases.
*/
CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer);
/** @brief Creates blob from .pb file.
* @param path to the .pb file with input tensor.
* @returns Mat.
*/
CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
* @param image input image (with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p image values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimensional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from image.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
const Size& size = Size(), const Scalar& mean = Scalar(),
bool swapRB=false, bool crop=false, int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
* swap Blue and Red channels.
* @param images input images (all with 1-, 3- or 4-channels).
* @param size spatial size for output image
* @param mean scalar with mean values which are subtracted from channels. Values are intended
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
* @param scalefactor multiplier for @p images values.
* @param swapRB flag which indicates that swap first and last channels
* in 3-channel image is necessary.
* @param crop flag which indicates whether image will be cropped after resize or not
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
* @returns 4-dimensional Mat with NCHW dimensions order.
*/
CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
int ddepth=CV_32F);
/** @brief Creates 4-dimensional blob from series of images.
* @details This is an overloaded member function, provided for convenience.
* It differs from the above function only in what argument(s) it accepts.
*/
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
double scalefactor=1.0, Size size = Size(),
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
int ddepth=CV_32F);
/** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
* (std::vector<cv::Mat>).
* @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
* which you would like to extract the images.
* @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
* (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
* of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
*/
CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
/** @brief Convert all weights of Caffe network to half precision floating point.
* @param src Path to origin model from Caffe framework contains single
* precision floating point weights (usually has `.caffemodel` extension).
* @param dst Path to destination model with updated weights.
* @param layersTypes Set of layers types which parameters will be converted.
* By default, converts only Convolutional and Fully-Connected layers'
* weights.
*
* @note Shrinked model has no origin float32 weights so it can't be used
* in origin Caffe framework anymore. However the structure of data
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
* So the resulting model may be used there.
*/
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
const std::vector<String>& layersTypes = std::vector<String>());
/** @brief Create a text representation for a binary network stored in protocol buffer format.
* @param[in] model A path to binary network.
* @param[in] output A path to output text file to be created.
*
* @note To reduce output file size, trained weights are not included.
*/
CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
/** @brief Performs non maximum suppression given boxes and corresponding scores.
* @param bboxes a set of bounding boxes to apply NMS.
* @param scores a set of corresponding confidences.
* @param score_threshold a threshold used to filter boxes by score.
* @param nms_threshold a threshold used in non maximum suppression.
* @param indices the kept indices of bboxes after NMS.
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
* @param top_k if `>0`, keep at most @p top_k picked indices.
*/
CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
const float score_threshold, const float nms_threshold,
CV_OUT std::vector<int>& indices,
const float eta = 1.f, const int top_k = 0);
/**
* @brief Enum of Soft NMS methods.
* @see softNMSBoxes
*/
enum class SoftNMSMethod
{
SOFTNMS_LINEAR = 1,
SOFTNMS_GAUSSIAN = 2
};
/** @brief Performs soft non maximum suppression given boxes and corresponding scores.
* Reference: https://arxiv.org/abs/1704.04503
* @param bboxes a set of bounding boxes to apply Soft NMS.
* @param scores a set of corresponding confidences.
* @param updated_scores a set of corresponding updated confidences.
* @param score_threshold a threshold used to filter boxes by score.
* @param nms_threshold a threshold used in non maximum suppression.
* @param indices the kept indices of bboxes after NMS.
* @param top_k keep at most @p top_k picked indices.
* @param sigma parameter of Gaussian weighting.
* @param method Gaussian or linear.
* @see SoftNMSMethod
*/
CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes,
const std::vector<float>& scores,
CV_OUT std::vector<float>& updated_scores,
const float score_threshold,
const float nms_threshold,
CV_OUT std::vector<int>& indices,
size_t top_k = 0,
const float sigma = 0.5,
SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN);
/** @brief This class is presented high-level API for neural networks.
*
* Model allows to set params for preprocessing input image.
* Model creates net from file with trained weights and config,
* sets preprocessing input and runs forward pass.
*/
class CV_EXPORTS_W_SIMPLE Model
{
public:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
Model();
Model(const Model&) = default;
Model(Model&&) = default;
Model& operator=(const Model&) = default;
Model& operator=(Model&&) = default;
/**
* @brief Create model from deep learning network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP Model(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP Model(const Net& network);
/** @brief Set input size for frame.
* @param[in] size New input size.
* @note If shape of the new blob less than 0, then frame size not change.
*/
CV_WRAP Model& setInputSize(const Size& size);
/** @overload
* @param[in] width New input width.
* @param[in] height New input height.
*/
CV_WRAP inline
Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); }
/** @brief Set mean value for frame.
* @param[in] mean Scalar with mean values which are subtracted from channels.
*/
CV_WRAP Model& setInputMean(const Scalar& mean);
/** @brief Set scalefactor value for frame.
* @param[in] scale Multiplier for frame values.
*/
CV_WRAP Model& setInputScale(double scale);
/** @brief Set flag crop for frame.
* @param[in] crop Flag which indicates whether image will be cropped after resize or not.
*/
CV_WRAP Model& setInputCrop(bool crop);
/** @brief Set flag swapRB for frame.
* @param[in] swapRB Flag which indicates that swap first and last channels.
*/
CV_WRAP Model& setInputSwapRB(bool swapRB);
/** @brief Set preprocessing parameters for frame.
* @param[in] size New input size.
* @param[in] mean Scalar with mean values which are subtracted from channels.
* @param[in] scale Multiplier for frame values.
* @param[in] swapRB Flag which indicates that swap first and last channels.
* @param[in] crop Flag which indicates whether image will be cropped after resize or not.
* blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
*/
CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);
/** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
* @param[in] frame The input image.
* @param[out] outs Allocated output blobs, which will store results of the computation.
*/
CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const;
// ============================== Net proxy methods ==============================
// Never expose methods with network implementation details, like:
// - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam
// - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes
// - forward* methods, setInput
/// @sa Net::setPreferableBackend
CV_WRAP Model& setPreferableBackend(dnn::Backend backendId);
/// @sa Net::setPreferableTarget
CV_WRAP Model& setPreferableTarget(dnn::Target targetId);
CV_DEPRECATED_EXTERNAL
operator Net&() const { return getNetwork_(); }
//protected: - internal/tests usage only
Net& getNetwork_() const;
inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); }
struct Impl;
inline Impl* getImpl() const { return impl.get(); }
inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
protected:
Ptr<Impl> impl;
};
/** @brief This class represents high-level API for classification models.
*
* ClassificationModel allows to set params for preprocessing input image.
* ClassificationModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return top-1 prediction.
*/
class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model
{
public:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
ClassificationModel();
/**
* @brief Create classification model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP ClassificationModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP ClassificationModel(const Net& network);
/**
* @brief Set enable/disable softmax post processing option.
*
* If this option is true, softmax is applied after forward inference within the classify() function
* to convert the confidences range to [0.0-1.0].
* This function allows you to toggle this behavior.
* Please turn true when not contain softmax layer in model.
* @param[in] enable Set enable softmax post processing within the classify() function.
*/
CV_WRAP ClassificationModel& setEnableSoftmaxPostProcessing(bool enable);
/**
* @brief Get enable/disable softmax post processing option.
*
* This option defaults to false, softmax post processing is not applied within the classify() function.
*/
CV_WRAP bool getEnableSoftmaxPostProcessing() const;
/** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
* @param[in] frame The input image.
*/
std::pair<int, float> classify(InputArray frame);
/** @overload */
CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
};
/** @brief This class represents high-level API for keypoints models
*
* KeypointsModel allows to set params for preprocessing input image.
* KeypointsModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
*/
class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model
{
public:
/**
* @brief Create keypoints model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP KeypointsModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP KeypointsModel(const Net& network);
/** @brief Given the @p input frame, create input blob, run net
* @param[in] frame The input image.
* @param thresh minimum confidence threshold to select a keypoint
* @returns a vector holding the x and y coordinates of each detected keypoint
*
*/
CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5);
};
/** @brief This class represents high-level API for segmentation models
*
* SegmentationModel allows to set params for preprocessing input image.
* SegmentationModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and returns the class prediction for each pixel.
*/
class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model
{
public:
/**
* @brief Create segmentation model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP SegmentationModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP SegmentationModel(const Net& network);
/** @brief Given the @p input frame, create input blob, run net
* @param[in] frame The input image.
* @param[out] mask Allocated class prediction for each pixel
*/
CV_WRAP void segment(InputArray frame, OutputArray mask);
};
/** @brief This class represents high-level API for object detection networks.
*
* DetectionModel allows to set params for preprocessing input image.
* DetectionModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return result detections.
* For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
*/
class CV_EXPORTS_W_SIMPLE DetectionModel : public Model
{
public:
/**
* @brief Create detection model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP DetectionModel(const String& model, const String& config = "");
/**
* @brief Create model from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP DetectionModel(const Net& network);
CV_DEPRECATED_EXTERNAL // avoid using in C++ code (need to fix bindings first)
DetectionModel();
/**
* @brief nmsAcrossClasses defaults to false,
* such that when non max suppression is used during the detect() function, it will do so per-class.
* This function allows you to toggle this behaviour.
* @param[in] value The new value for nmsAcrossClasses
*/
CV_WRAP DetectionModel& setNmsAcrossClasses(bool value);
/**
* @brief Getter for nmsAcrossClasses. This variable defaults to false,
* such that when non max suppression is used during the detect() function, it will do so only per-class
*/
CV_WRAP bool getNmsAcrossClasses();
/** @brief Given the @p input frame, create input blob, run net and return result detections.
* @param[in] frame The input image.
* @param[out] classIds Class indexes in result detection.
* @param[out] confidences A set of corresponding confidences.
* @param[out] boxes A set of bounding boxes.
* @param[in] confThreshold A threshold used to filter boxes by confidences.
* @param[in] nmsThreshold A threshold used in non maximum suppression.
*/
CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
float confThreshold = 0.5f, float nmsThreshold = 0.0f);
};
/** @brief This class represents high-level API for text recognition networks.
*
* TextRecognitionModel allows to set params for preprocessing input image.
* TextRecognitionModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and return recognition result.
* For TextRecognitionModel, CRNN-CTC is supported.
*/
class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model
{
public:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
TextRecognitionModel();
/**
* @brief Create Text Recognition model from deep learning network
* Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
* @param[in] network Net object
*/
CV_WRAP TextRecognitionModel(const Net& network);
/**
* @brief Create text recognition model from network represented in one of the supported formats
* Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
* @param[in] model Binary file contains trained weights
* @param[in] config Text file contains network configuration
*/
CV_WRAP inline
TextRecognitionModel(const std::string& model, const std::string& config = "")
: TextRecognitionModel(readNet(model, config)) { /* nothing */ }
/**
* @brief Set the decoding method of translating the network output into string
* @param[in] decodeType The decoding method of translating the network output into string, currently supported type:
* - `"CTC-greedy"` greedy decoding for the output of CTC-based methods
* - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods
*/
CV_WRAP
TextRecognitionModel& setDecodeType(const std::string& decodeType);
/**
* @brief Get the decoding method
* @return the decoding method
*/
CV_WRAP
const std::string& getDecodeType() const;
/**
* @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
* @param[in] beamSize Beam size for search
* @param[in] vocPruneSize Parameter to optimize big vocabulary search,
* only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
*/
CV_WRAP
TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0);
/**
* @brief Set the vocabulary for recognition.
* @param[in] vocabulary the associated vocabulary of the network.
*/
CV_WRAP
TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary);
/**
* @brief Get the vocabulary for recognition.
* @return vocabulary the associated vocabulary
*/
CV_WRAP
const std::vector<std::string>& getVocabulary() const;
/**
* @brief Given the @p input frame, create input blob, run net and return recognition result
* @param[in] frame The input image
* @return The text recognition result
*/
CV_WRAP
std::string recognize(InputArray frame) const;
/**
* @brief Given the @p input frame, create input blob, run net and return recognition result
* @param[in] frame The input image
* @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
* @param[out] results A set of text recognition results.
*/
CV_WRAP
void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const;
};
/** @brief Base class for text detection networks
*/
class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model
{
protected:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
TextDetectionModel();
public:
/** @brief Performs detection
*
* Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
*
* Each result is quadrangle's 4 points in this order:
* - bottom-left
* - top-left
* - top-right
* - bottom-right
*
* Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
*
* @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
*
* @param[in] frame The input image
* @param[out] detections array with detections' quadrangles (4 points per result)
* @param[out] confidences array with detection confidences
*/
CV_WRAP
void detect(
InputArray frame,
CV_OUT std::vector< std::vector<Point> >& detections,
CV_OUT std::vector<float>& confidences
) const;
/** @overload */
CV_WRAP
void detect(
InputArray frame,
CV_OUT std::vector< std::vector<Point> >& detections
) const;
/** @brief Performs detection
*
* Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
*
* Each result is rotated rectangle.
*
* @note Result may be inaccurate in case of strong perspective transformations.
*
* @param[in] frame the input image
* @param[out] detections array with detections' RotationRect results
* @param[out] confidences array with detection confidences
*/
CV_WRAP
void detectTextRectangles(
InputArray frame,
CV_OUT std::vector<cv::RotatedRect>& detections,
CV_OUT std::vector<float>& confidences
) const;
/** @overload */
CV_WRAP
void detectTextRectangles(
InputArray frame,
CV_OUT std::vector<cv::RotatedRect>& detections
) const;
};
/** @brief This class represents high-level API for text detection DL networks compatible with EAST model.
*
* Configurable parameters:
* - (float) confThreshold - used to filter boxes by confidences, default: 0.5f
* - (float) nmsThreshold - used in non maximum suppression, default: 0.0f
*/
class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel
{
public:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
TextDetectionModel_EAST();
/**
* @brief Create text detection algorithm from deep learning network
* @param[in] network Net object
*/
CV_WRAP TextDetectionModel_EAST(const Net& network);
/**
* @brief Create text detection model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP inline
TextDetectionModel_EAST(const std::string& model, const std::string& config = "")
: TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }
/**
* @brief Set the detection confidence threshold
* @param[in] confThreshold A threshold used to filter boxes by confidences
*/
CV_WRAP
TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold);
/**
* @brief Get the detection confidence threshold
*/
CV_WRAP
float getConfidenceThreshold() const;
/**
* @brief Set the detection NMS filter threshold
* @param[in] nmsThreshold A threshold used in non maximum suppression
*/
CV_WRAP
TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold);
/**
* @brief Get the detection confidence threshold
*/
CV_WRAP
float getNMSThreshold() const;
};
/** @brief This class represents high-level API for text detection DL networks compatible with DB model.
*
* Related publications: @cite liao2020real
* Paper: https://arxiv.org/abs/1911.08947
* For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
*
* Configurable parameters:
* - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
* - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
* - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
* - (int) maxCandidates - The max number of the output results.
*/
class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel
{
public:
CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
TextDetectionModel_DB();
/**
* @brief Create text detection algorithm from deep learning network.
* @param[in] network Net object.
*/
CV_WRAP TextDetectionModel_DB(const Net& network);
/**
* @brief Create text detection model from network represented in one of the supported formats.
* An order of @p model and @p config arguments does not matter.
* @param[in] model Binary file contains trained weights.
* @param[in] config Text file contains network configuration.
*/
CV_WRAP inline
TextDetectionModel_DB(const std::string& model, const std::string& config = "")
: TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }
CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
CV_WRAP float getBinaryThreshold() const;
CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold);
CV_WRAP float getPolygonThreshold() const;
CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio);
CV_WRAP double getUnclipRatio() const;
CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates);
CV_WRAP int getMaxCandidates() const;
};
//! @}
CV__DNN_INLINE_NS_END
}
}
#include <opencv2/dnn/layer.hpp>
#include <opencv2/dnn/dnn.inl.hpp>
/// @deprecated Include this header directly from application. Automatic inclusion will be removed
#include <opencv2/dnn/utils/inference_engine.hpp>
#endif /* OPENCV_DNN_DNN_HPP */