1178 lines
50 KiB
C
1178 lines
50 KiB
C
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef OPENCV_IMGPROC_IMGPROC_C_H
|
|
#define OPENCV_IMGPROC_IMGPROC_C_H
|
|
|
|
#include "opencv2/imgproc/types_c.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/** @addtogroup imgproc_c
|
|
@{
|
|
*/
|
|
|
|
/*********************** Background statistics accumulation *****************************/
|
|
|
|
/** @brief Adds image to accumulator
|
|
@see cv::accumulate
|
|
*/
|
|
CVAPI(void) cvAcc( const CvArr* image, CvArr* sum,
|
|
const CvArr* mask CV_DEFAULT(NULL) );
|
|
|
|
/** @brief Adds squared image to accumulator
|
|
@see cv::accumulateSquare
|
|
*/
|
|
CVAPI(void) cvSquareAcc( const CvArr* image, CvArr* sqsum,
|
|
const CvArr* mask CV_DEFAULT(NULL) );
|
|
|
|
/** @brief Adds a product of two images to accumulator
|
|
@see cv::accumulateProduct
|
|
*/
|
|
CVAPI(void) cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc,
|
|
const CvArr* mask CV_DEFAULT(NULL) );
|
|
|
|
/** @brief Adds image to accumulator with weights: acc = acc*(1-alpha) + image*alpha
|
|
@see cv::accumulateWeighted
|
|
*/
|
|
CVAPI(void) cvRunningAvg( const CvArr* image, CvArr* acc, double alpha,
|
|
const CvArr* mask CV_DEFAULT(NULL) );
|
|
|
|
/****************************************************************************************\
|
|
* Image Processing *
|
|
\****************************************************************************************/
|
|
|
|
/** Copies source 2D array inside of the larger destination array and
|
|
makes a border of the specified type (IPL_BORDER_*) around the copied area. */
|
|
CVAPI(void) cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset,
|
|
int bordertype, CvScalar value CV_DEFAULT(cvScalarAll(0)));
|
|
|
|
/** @brief Smooths the image in one of several ways.
|
|
|
|
@param src The source image
|
|
@param dst The destination image
|
|
@param smoothtype Type of the smoothing, see SmoothMethod_c
|
|
@param size1 The first parameter of the smoothing operation, the aperture width. Must be a
|
|
positive odd number (1, 3, 5, ...)
|
|
@param size2 The second parameter of the smoothing operation, the aperture height. Ignored by
|
|
CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and Gaussian blur if
|
|
size2 is zero, it is set to size1. Otherwise it must be a positive odd number.
|
|
@param sigma1 In the case of a Gaussian parameter this parameter may specify Gaussian \f$\sigma\f$
|
|
(standard deviation). If it is zero, it is calculated from the kernel size:
|
|
\f[\sigma = 0.3 (n/2 - 1) + 0.8 \quad \text{where} \quad n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}\f]
|
|
Using standard sigma for small kernels ( \f$3\times 3\f$ to \f$7\times 7\f$ ) gives better speed. If
|
|
sigma1 is not zero, while size1 and size2 are zeros, the kernel size is calculated from the
|
|
sigma (to provide accurate enough operation).
|
|
@param sigma2 additional parameter for bilateral filtering
|
|
|
|
@see cv::GaussianBlur, cv::blur, cv::medianBlur, cv::bilateralFilter.
|
|
*/
|
|
CVAPI(void) cvSmooth( const CvArr* src, CvArr* dst,
|
|
int smoothtype CV_DEFAULT(CV_GAUSSIAN),
|
|
int size1 CV_DEFAULT(3),
|
|
int size2 CV_DEFAULT(0),
|
|
double sigma1 CV_DEFAULT(0),
|
|
double sigma2 CV_DEFAULT(0));
|
|
|
|
/** @brief Convolves an image with the kernel.
|
|
|
|
@param src input image.
|
|
@param dst output image of the same size and the same number of channels as src.
|
|
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
|
|
matrix; if you want to apply different kernels to different channels, split the image into
|
|
separate color planes using split and process them individually.
|
|
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
|
|
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
|
|
is at the kernel center.
|
|
|
|
@see cv::filter2D
|
|
*/
|
|
CVAPI(void) cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel,
|
|
CvPoint anchor CV_DEFAULT(cvPoint(-1,-1)));
|
|
|
|
/** @brief Finds integral image: SUM(X,Y) = sum(x<X,y<Y)I(x,y)
|
|
@see cv::integral
|
|
*/
|
|
CVAPI(void) cvIntegral( const CvArr* image, CvArr* sum,
|
|
CvArr* sqsum CV_DEFAULT(NULL),
|
|
CvArr* tilted_sum CV_DEFAULT(NULL));
|
|
|
|
/** @brief Smoothes the input image with gaussian kernel and then down-samples it.
|
|
|
|
dst_width = floor(src_width/2)[+1],
|
|
dst_height = floor(src_height/2)[+1]
|
|
@see cv::pyrDown
|
|
*/
|
|
CVAPI(void) cvPyrDown( const CvArr* src, CvArr* dst,
|
|
int filter CV_DEFAULT(CV_GAUSSIAN_5x5) );
|
|
|
|
/** @brief Up-samples image and smoothes the result with gaussian kernel.
|
|
|
|
dst_width = src_width*2,
|
|
dst_height = src_height*2
|
|
@see cv::pyrUp
|
|
*/
|
|
CVAPI(void) cvPyrUp( const CvArr* src, CvArr* dst,
|
|
int filter CV_DEFAULT(CV_GAUSSIAN_5x5) );
|
|
|
|
/** @brief Builds pyramid for an image
|
|
@see buildPyramid
|
|
*/
|
|
CVAPI(CvMat**) cvCreatePyramid( const CvArr* img, int extra_layers, double rate,
|
|
const CvSize* layer_sizes CV_DEFAULT(0),
|
|
CvArr* bufarr CV_DEFAULT(0),
|
|
int calc CV_DEFAULT(1),
|
|
int filter CV_DEFAULT(CV_GAUSSIAN_5x5) );
|
|
|
|
/** @brief Releases pyramid */
|
|
CVAPI(void) cvReleasePyramid( CvMat*** pyramid, int extra_layers );
|
|
|
|
|
|
/** @brief Filters image using meanshift algorithm
|
|
@see cv::pyrMeanShiftFiltering
|
|
*/
|
|
CVAPI(void) cvPyrMeanShiftFiltering( const CvArr* src, CvArr* dst,
|
|
double sp, double sr, int max_level CV_DEFAULT(1),
|
|
CvTermCriteria termcrit CV_DEFAULT(cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1)));
|
|
|
|
/** @brief Segments image using seed "markers"
|
|
@see cv::watershed
|
|
*/
|
|
CVAPI(void) cvWatershed( const CvArr* image, CvArr* markers );
|
|
|
|
/** @brief Calculates an image derivative using generalized Sobel
|
|
|
|
(aperture_size = 1,3,5,7) or Scharr (aperture_size = -1) operator.
|
|
Scharr can be used only for the first dx or dy derivative
|
|
@see cv::Sobel
|
|
*/
|
|
CVAPI(void) cvSobel( const CvArr* src, CvArr* dst,
|
|
int xorder, int yorder,
|
|
int aperture_size CV_DEFAULT(3));
|
|
|
|
/** @brief Calculates the image Laplacian: (d2/dx + d2/dy)I
|
|
@see cv::Laplacian
|
|
*/
|
|
CVAPI(void) cvLaplace( const CvArr* src, CvArr* dst,
|
|
int aperture_size CV_DEFAULT(3) );
|
|
|
|
/** @brief Converts input array pixels from one color space to another
|
|
@see cv::cvtColor
|
|
*/
|
|
CVAPI(void) cvCvtColor( const CvArr* src, CvArr* dst, int code );
|
|
|
|
|
|
/** @brief Resizes image (input array is resized to fit the destination array)
|
|
@see cv::resize
|
|
*/
|
|
CVAPI(void) cvResize( const CvArr* src, CvArr* dst,
|
|
int interpolation CV_DEFAULT( CV_INTER_LINEAR ));
|
|
|
|
/** @brief Warps image with affine transform
|
|
@note ::cvGetQuadrangleSubPix is similar to ::cvWarpAffine, but the outliers are extrapolated using
|
|
replication border mode.
|
|
@see cv::warpAffine
|
|
*/
|
|
CVAPI(void) cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix,
|
|
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS),
|
|
CvScalar fillval CV_DEFAULT(cvScalarAll(0)) );
|
|
|
|
/** @brief Computes affine transform matrix for mapping src[i] to dst[i] (i=0,1,2)
|
|
@see cv::getAffineTransform
|
|
*/
|
|
CVAPI(CvMat*) cvGetAffineTransform( const CvPoint2D32f * src,
|
|
const CvPoint2D32f * dst,
|
|
CvMat * map_matrix );
|
|
|
|
/** @brief Computes rotation_matrix matrix
|
|
@see cv::getRotationMatrix2D
|
|
*/
|
|
CVAPI(CvMat*) cv2DRotationMatrix( CvPoint2D32f center, double angle,
|
|
double scale, CvMat* map_matrix );
|
|
|
|
/** @brief Warps image with perspective (projective) transform
|
|
@see cv::warpPerspective
|
|
*/
|
|
CVAPI(void) cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix,
|
|
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS),
|
|
CvScalar fillval CV_DEFAULT(cvScalarAll(0)) );
|
|
|
|
/** @brief Computes perspective transform matrix for mapping src[i] to dst[i] (i=0,1,2,3)
|
|
@see cv::getPerspectiveTransform
|
|
*/
|
|
CVAPI(CvMat*) cvGetPerspectiveTransform( const CvPoint2D32f* src,
|
|
const CvPoint2D32f* dst,
|
|
CvMat* map_matrix );
|
|
|
|
/** @brief Performs generic geometric transformation using the specified coordinate maps
|
|
@see cv::remap
|
|
*/
|
|
CVAPI(void) cvRemap( const CvArr* src, CvArr* dst,
|
|
const CvArr* mapx, const CvArr* mapy,
|
|
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS),
|
|
CvScalar fillval CV_DEFAULT(cvScalarAll(0)) );
|
|
|
|
/** @brief Converts mapx & mapy from floating-point to integer formats for cvRemap
|
|
@see cv::convertMaps
|
|
*/
|
|
CVAPI(void) cvConvertMaps( const CvArr* mapx, const CvArr* mapy,
|
|
CvArr* mapxy, CvArr* mapalpha );
|
|
|
|
/** @brief Performs forward or inverse log-polar image transform
|
|
@see cv::warpPolar
|
|
*/
|
|
CVAPI(void) cvLogPolar( const CvArr* src, CvArr* dst,
|
|
CvPoint2D32f center, double M,
|
|
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS));
|
|
|
|
/** Performs forward or inverse linear-polar image transform
|
|
@see cv::warpPolar
|
|
*/
|
|
CVAPI(void) cvLinearPolar( const CvArr* src, CvArr* dst,
|
|
CvPoint2D32f center, double maxRadius,
|
|
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS));
|
|
|
|
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
|
|
|
|
@note the created structuring element IplConvKernel\* element must be released in the end using
|
|
`cvReleaseStructuringElement(&element)`.
|
|
|
|
@param cols Width of the structuring element
|
|
@param rows Height of the structuring element
|
|
@param anchor_x x-coordinate of the anchor
|
|
@param anchor_y y-coordinate of the anchor
|
|
@param shape element shape that could be one of the cv::MorphShapes_c
|
|
@param values integer array of cols*rows elements that specifies the custom shape of the
|
|
structuring element, when shape=CV_SHAPE_CUSTOM.
|
|
|
|
@see cv::getStructuringElement
|
|
*/
|
|
CVAPI(IplConvKernel*) cvCreateStructuringElementEx(
|
|
int cols, int rows, int anchor_x, int anchor_y,
|
|
int shape, int* values CV_DEFAULT(NULL) );
|
|
|
|
/** @brief releases structuring element
|
|
@see cvCreateStructuringElementEx
|
|
*/
|
|
CVAPI(void) cvReleaseStructuringElement( IplConvKernel** element );
|
|
|
|
/** @brief erodes input image (applies minimum filter) one or more times.
|
|
If element pointer is NULL, 3x3 rectangular element is used
|
|
@see cv::erode
|
|
*/
|
|
CVAPI(void) cvErode( const CvArr* src, CvArr* dst,
|
|
IplConvKernel* element CV_DEFAULT(NULL),
|
|
int iterations CV_DEFAULT(1) );
|
|
|
|
/** @brief dilates input image (applies maximum filter) one or more times.
|
|
|
|
If element pointer is NULL, 3x3 rectangular element is used
|
|
@see cv::dilate
|
|
*/
|
|
CVAPI(void) cvDilate( const CvArr* src, CvArr* dst,
|
|
IplConvKernel* element CV_DEFAULT(NULL),
|
|
int iterations CV_DEFAULT(1) );
|
|
|
|
/** @brief Performs complex morphological transformation
|
|
@see cv::morphologyEx
|
|
*/
|
|
CVAPI(void) cvMorphologyEx( const CvArr* src, CvArr* dst,
|
|
CvArr* temp, IplConvKernel* element,
|
|
int operation, int iterations CV_DEFAULT(1) );
|
|
|
|
/** @brief Calculates all spatial and central moments up to the 3rd order
|
|
@see cv::moments
|
|
*/
|
|
CVAPI(void) cvMoments( const CvArr* arr, CvMoments* moments, int binary CV_DEFAULT(0));
|
|
|
|
/** @brief Retrieve spatial moments */
|
|
CVAPI(double) cvGetSpatialMoment( CvMoments* moments, int x_order, int y_order );
|
|
/** @brief Retrieve central moments */
|
|
CVAPI(double) cvGetCentralMoment( CvMoments* moments, int x_order, int y_order );
|
|
/** @brief Retrieve normalized central moments */
|
|
CVAPI(double) cvGetNormalizedCentralMoment( CvMoments* moments,
|
|
int x_order, int y_order );
|
|
|
|
/** @brief Calculates 7 Hu's invariants from precalculated spatial and central moments
|
|
@see cv::HuMoments
|
|
*/
|
|
CVAPI(void) cvGetHuMoments( CvMoments* moments, CvHuMoments* hu_moments );
|
|
|
|
/*********************************** data sampling **************************************/
|
|
|
|
/** @brief Fetches pixels that belong to the specified line segment and stores them to the buffer.
|
|
|
|
Returns the number of retrieved points.
|
|
@see cv::LineSegmentDetector
|
|
*/
|
|
CVAPI(int) cvSampleLine( const CvArr* image, CvPoint pt1, CvPoint pt2, void* buffer,
|
|
int connectivity CV_DEFAULT(8));
|
|
|
|
/** @brief Retrieves the rectangular image region with specified center from the input array.
|
|
|
|
dst(x,y) <- src(x + center.x - dst_width/2, y + center.y - dst_height/2).
|
|
Values of pixels with fractional coordinates are retrieved using bilinear interpolation
|
|
@see cv::getRectSubPix
|
|
*/
|
|
CVAPI(void) cvGetRectSubPix( const CvArr* src, CvArr* dst, CvPoint2D32f center );
|
|
|
|
|
|
/** @brief Retrieves quadrangle from the input array.
|
|
|
|
matrixarr = ( a11 a12 | b1 ) dst(x,y) <- src(A[x y]' + b)
|
|
( a21 a22 | b2 ) (bilinear interpolation is used to retrieve pixels
|
|
with fractional coordinates)
|
|
@see cvWarpAffine
|
|
*/
|
|
CVAPI(void) cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst,
|
|
const CvMat* map_matrix );
|
|
|
|
/** @brief Measures similarity between template and overlapped windows in the source image
|
|
and fills the resultant image with the measurements
|
|
@see cv::matchTemplate
|
|
*/
|
|
CVAPI(void) cvMatchTemplate( const CvArr* image, const CvArr* templ,
|
|
CvArr* result, int method );
|
|
|
|
/** @brief Computes earth mover distance between
|
|
two weighted point sets (called signatures)
|
|
@see cv::EMD
|
|
*/
|
|
CVAPI(float) cvCalcEMD2( const CvArr* signature1,
|
|
const CvArr* signature2,
|
|
int distance_type,
|
|
CvDistanceFunction distance_func CV_DEFAULT(NULL),
|
|
const CvArr* cost_matrix CV_DEFAULT(NULL),
|
|
CvArr* flow CV_DEFAULT(NULL),
|
|
float* lower_bound CV_DEFAULT(NULL),
|
|
void* userdata CV_DEFAULT(NULL));
|
|
|
|
/****************************************************************************************\
|
|
* Contours retrieving *
|
|
\****************************************************************************************/
|
|
|
|
/** @brief Retrieves outer and optionally inner boundaries of white (non-zero) connected
|
|
components in the black (zero) background
|
|
@see cv::findContours, cvStartFindContours, cvFindNextContour, cvSubstituteContour, cvEndFindContours
|
|
*/
|
|
CVAPI(int) cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour,
|
|
int header_size CV_DEFAULT(sizeof(CvContour)),
|
|
int mode CV_DEFAULT(CV_RETR_LIST),
|
|
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
|
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
|
|
|
/** @brief Initializes contour retrieving process.
|
|
|
|
Calls cvStartFindContours.
|
|
Calls cvFindNextContour until null pointer is returned
|
|
or some other condition becomes true.
|
|
Calls cvEndFindContours at the end.
|
|
@see cvFindContours
|
|
*/
|
|
CVAPI(CvContourScanner) cvStartFindContours( CvArr* image, CvMemStorage* storage,
|
|
int header_size CV_DEFAULT(sizeof(CvContour)),
|
|
int mode CV_DEFAULT(CV_RETR_LIST),
|
|
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
|
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
|
|
|
/** @brief Retrieves next contour
|
|
@see cvFindContours
|
|
*/
|
|
CVAPI(CvSeq*) cvFindNextContour( CvContourScanner scanner );
|
|
|
|
|
|
/** @brief Substitutes the last retrieved contour with the new one
|
|
|
|
(if the substitutor is null, the last retrieved contour is removed from the tree)
|
|
@see cvFindContours
|
|
*/
|
|
CVAPI(void) cvSubstituteContour( CvContourScanner scanner, CvSeq* new_contour );
|
|
|
|
|
|
/** @brief Releases contour scanner and returns pointer to the first outer contour
|
|
@see cvFindContours
|
|
*/
|
|
CVAPI(CvSeq*) cvEndFindContours( CvContourScanner* scanner );
|
|
|
|
/** @brief Approximates Freeman chain(s) with a polygonal curve.
|
|
|
|
This is a standalone contour approximation routine, not represented in the new interface. When
|
|
cvFindContours retrieves contours as Freeman chains, it calls the function to get approximated
|
|
contours, represented as polygons.
|
|
|
|
@param src_seq Pointer to the approximated Freeman chain that can refer to other chains.
|
|
@param storage Storage location for the resulting polylines.
|
|
@param method Approximation method (see the description of the function :ocvFindContours ).
|
|
@param parameter Method parameter (not used now).
|
|
@param minimal_perimeter Approximates only those contours whose perimeters are not less than
|
|
minimal_perimeter . Other chains are removed from the resulting structure.
|
|
@param recursive Recursion flag. If it is non-zero, the function approximates all chains that can
|
|
be obtained from chain by using the h_next or v_next links. Otherwise, the single input chain is
|
|
approximated.
|
|
@see cvStartReadChainPoints, cvReadChainPoint
|
|
*/
|
|
CVAPI(CvSeq*) cvApproxChains( CvSeq* src_seq, CvMemStorage* storage,
|
|
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
|
double parameter CV_DEFAULT(0),
|
|
int minimal_perimeter CV_DEFAULT(0),
|
|
int recursive CV_DEFAULT(0));
|
|
|
|
/** @brief Initializes Freeman chain reader.
|
|
|
|
The reader is used to iteratively get coordinates of all the chain points.
|
|
If the Freeman codes should be read as is, a simple sequence reader should be used
|
|
@see cvApproxChains
|
|
*/
|
|
CVAPI(void) cvStartReadChainPoints( CvChain* chain, CvChainPtReader* reader );
|
|
|
|
/** @brief Retrieves the next chain point
|
|
@see cvApproxChains
|
|
*/
|
|
CVAPI(CvPoint) cvReadChainPoint( CvChainPtReader* reader );
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Contour Processing and Shape Analysis *
|
|
\****************************************************************************************/
|
|
|
|
/** @brief Approximates a single polygonal curve (contour) or
|
|
a tree of polygonal curves (contours)
|
|
@see cv::approxPolyDP
|
|
*/
|
|
CVAPI(CvSeq*) cvApproxPoly( const void* src_seq,
|
|
int header_size, CvMemStorage* storage,
|
|
int method, double eps,
|
|
int recursive CV_DEFAULT(0));
|
|
|
|
/** @brief Calculates perimeter of a contour or length of a part of contour
|
|
@see cv::arcLength
|
|
*/
|
|
CVAPI(double) cvArcLength( const void* curve,
|
|
CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ),
|
|
int is_closed CV_DEFAULT(-1));
|
|
|
|
/** same as cvArcLength for closed contour
|
|
*/
|
|
CV_INLINE double cvContourPerimeter( const void* contour )
|
|
{
|
|
return cvArcLength( contour, CV_WHOLE_SEQ, 1 );
|
|
}
|
|
|
|
|
|
/** @brief Calculates contour bounding rectangle (update=1) or
|
|
just retrieves pre-calculated rectangle (update=0)
|
|
@see cv::boundingRect
|
|
*/
|
|
CVAPI(CvRect) cvBoundingRect( CvArr* points, int update CV_DEFAULT(0) );
|
|
|
|
/** @brief Calculates area of a contour or contour segment
|
|
@see cv::contourArea
|
|
*/
|
|
CVAPI(double) cvContourArea( const CvArr* contour,
|
|
CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ),
|
|
int oriented CV_DEFAULT(0));
|
|
|
|
/** @brief Finds minimum area rotated rectangle bounding a set of points
|
|
@see cv::minAreaRect
|
|
*/
|
|
CVAPI(CvBox2D) cvMinAreaRect2( const CvArr* points,
|
|
CvMemStorage* storage CV_DEFAULT(NULL));
|
|
|
|
/** @brief Finds minimum enclosing circle for a set of points
|
|
@see cv::minEnclosingCircle
|
|
*/
|
|
CVAPI(int) cvMinEnclosingCircle( const CvArr* points,
|
|
CvPoint2D32f* center, float* radius );
|
|
|
|
/** @brief Compares two contours by matching their moments
|
|
@see cv::matchShapes
|
|
*/
|
|
CVAPI(double) cvMatchShapes( const void* object1, const void* object2,
|
|
int method, double parameter CV_DEFAULT(0));
|
|
|
|
/** @brief Calculates exact convex hull of 2d point set
|
|
@see cv::convexHull
|
|
*/
|
|
CVAPI(CvSeq*) cvConvexHull2( const CvArr* input,
|
|
void* hull_storage CV_DEFAULT(NULL),
|
|
int orientation CV_DEFAULT(CV_CLOCKWISE),
|
|
int return_points CV_DEFAULT(0));
|
|
|
|
/** @brief Checks whether the contour is convex or not (returns 1 if convex, 0 if not)
|
|
@see cv::isContourConvex
|
|
*/
|
|
CVAPI(int) cvCheckContourConvexity( const CvArr* contour );
|
|
|
|
|
|
/** @brief Finds convexity defects for the contour
|
|
@see cv::convexityDefects
|
|
*/
|
|
CVAPI(CvSeq*) cvConvexityDefects( const CvArr* contour, const CvArr* convexhull,
|
|
CvMemStorage* storage CV_DEFAULT(NULL));
|
|
|
|
/** @brief Fits ellipse into a set of 2d points
|
|
@see cv::fitEllipse
|
|
*/
|
|
CVAPI(CvBox2D) cvFitEllipse2( const CvArr* points );
|
|
|
|
/** @brief Finds minimum rectangle containing two given rectangles */
|
|
CVAPI(CvRect) cvMaxRect( const CvRect* rect1, const CvRect* rect2 );
|
|
|
|
/** @brief Finds coordinates of the box vertices */
|
|
CVAPI(void) cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] );
|
|
|
|
/** @brief Initializes sequence header for a matrix (column or row vector) of points
|
|
|
|
a wrapper for cvMakeSeqHeaderForArray (it does not initialize bounding rectangle!!!) */
|
|
CVAPI(CvSeq*) cvPointSeqFromMat( int seq_kind, const CvArr* mat,
|
|
CvContour* contour_header,
|
|
CvSeqBlock* block );
|
|
|
|
/** @brief Checks whether the point is inside polygon, outside, on an edge (at a vertex).
|
|
|
|
Returns positive, negative or zero value, correspondingly.
|
|
Optionally, measures a signed distance between
|
|
the point and the nearest polygon edge (measure_dist=1)
|
|
@see cv::pointPolygonTest
|
|
*/
|
|
CVAPI(double) cvPointPolygonTest( const CvArr* contour,
|
|
CvPoint2D32f pt, int measure_dist );
|
|
|
|
/****************************************************************************************\
|
|
* Histogram functions *
|
|
\****************************************************************************************/
|
|
|
|
/** @brief Creates a histogram.
|
|
|
|
The function creates a histogram of the specified size and returns a pointer to the created
|
|
histogram. If the array ranges is 0, the histogram bin ranges must be specified later via the
|
|
function cvSetHistBinRanges. Though cvCalcHist and cvCalcBackProject may process 8-bit images
|
|
without setting bin ranges, they assume they are equally spaced in 0 to 255 bins.
|
|
|
|
@param dims Number of histogram dimensions.
|
|
@param sizes Array of the histogram dimension sizes.
|
|
@param type Histogram representation format. CV_HIST_ARRAY means that the histogram data is
|
|
represented as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that histogram data
|
|
is represented as a multi-dimensional sparse array CvSparseMat.
|
|
@param ranges Array of ranges for the histogram bins. Its meaning depends on the uniform parameter
|
|
value. The ranges are used when the histogram is calculated or backprojected to determine which
|
|
histogram bin corresponds to which value/tuple of values from the input image(s).
|
|
@param uniform Uniformity flag. If not zero, the histogram has evenly spaced bins and for every
|
|
\f$0<=i<cDims\f$ ranges[i] is an array of two numbers: lower and upper boundaries for the i-th
|
|
histogram dimension. The whole range [lower,upper] is then split into dims[i] equal parts to
|
|
determine the i-th input tuple value ranges for every histogram bin. And if uniform=0 , then the
|
|
i-th element of the ranges array contains dims[i]+1 elements: \f$\texttt{lower}_0,
|
|
\texttt{upper}_0, \texttt{lower}_1, \texttt{upper}_1 = \texttt{lower}_2,
|
|
...
|
|
\texttt{upper}_{dims[i]-1}\f$ where \f$\texttt{lower}_j\f$ and \f$\texttt{upper}_j\f$ are lower
|
|
and upper boundaries of the i-th input tuple value for the j-th bin, respectively. In either
|
|
case, the input values that are beyond the specified range for a histogram bin are not counted
|
|
by cvCalcHist and filled with 0 by cvCalcBackProject.
|
|
*/
|
|
CVAPI(CvHistogram*) cvCreateHist( int dims, int* sizes, int type,
|
|
float** ranges CV_DEFAULT(NULL),
|
|
int uniform CV_DEFAULT(1));
|
|
|
|
/** @brief Sets the bounds of the histogram bins.
|
|
|
|
This is a standalone function for setting bin ranges in the histogram. For a more detailed
|
|
description of the parameters ranges and uniform, see the :ocvCalcHist function that can initialize
|
|
the ranges as well. Ranges for the histogram bins must be set before the histogram is calculated or
|
|
the backproject of the histogram is calculated.
|
|
|
|
@param hist Histogram.
|
|
@param ranges Array of bin ranges arrays. See :ocvCreateHist for details.
|
|
@param uniform Uniformity flag. See :ocvCreateHist for details.
|
|
*/
|
|
CVAPI(void) cvSetHistBinRanges( CvHistogram* hist, float** ranges,
|
|
int uniform CV_DEFAULT(1));
|
|
|
|
/** @brief Makes a histogram out of an array.
|
|
|
|
The function initializes the histogram, whose header and bins are allocated by the user.
|
|
cvReleaseHist does not need to be called afterwards. Only dense histograms can be initialized this
|
|
way. The function returns hist.
|
|
|
|
@param dims Number of the histogram dimensions.
|
|
@param sizes Array of the histogram dimension sizes.
|
|
@param hist Histogram header initialized by the function.
|
|
@param data Array used to store histogram bins.
|
|
@param ranges Histogram bin ranges. See cvCreateHist for details.
|
|
@param uniform Uniformity flag. See cvCreateHist for details.
|
|
*/
|
|
CVAPI(CvHistogram*) cvMakeHistHeaderForArray(
|
|
int dims, int* sizes, CvHistogram* hist,
|
|
float* data, float** ranges CV_DEFAULT(NULL),
|
|
int uniform CV_DEFAULT(1));
|
|
|
|
/** @brief Releases the histogram.
|
|
|
|
The function releases the histogram (header and the data). The pointer to the histogram is cleared
|
|
by the function. If \*hist pointer is already NULL, the function does nothing.
|
|
|
|
@param hist Double pointer to the released histogram.
|
|
*/
|
|
CVAPI(void) cvReleaseHist( CvHistogram** hist );
|
|
|
|
/** @brief Clears the histogram.
|
|
|
|
The function sets all of the histogram bins to 0 in case of a dense histogram and removes all
|
|
histogram bins in case of a sparse array.
|
|
|
|
@param hist Histogram.
|
|
*/
|
|
CVAPI(void) cvClearHist( CvHistogram* hist );
|
|
|
|
/** @brief Finds the minimum and maximum histogram bins.
|
|
|
|
The function finds the minimum and maximum histogram bins and their positions. All of output
|
|
arguments are optional. Among several extremas with the same value the ones with the minimum index
|
|
(in the lexicographical order) are returned. In case of several maximums or minimums, the earliest
|
|
in the lexicographical order (extrema locations) is returned.
|
|
|
|
@param hist Histogram.
|
|
@param min_value Pointer to the minimum value of the histogram.
|
|
@param max_value Pointer to the maximum value of the histogram.
|
|
@param min_idx Pointer to the array of coordinates for the minimum.
|
|
@param max_idx Pointer to the array of coordinates for the maximum.
|
|
*/
|
|
CVAPI(void) cvGetMinMaxHistValue( const CvHistogram* hist,
|
|
float* min_value, float* max_value,
|
|
int* min_idx CV_DEFAULT(NULL),
|
|
int* max_idx CV_DEFAULT(NULL));
|
|
|
|
|
|
/** @brief Normalizes the histogram.
|
|
|
|
The function normalizes the histogram bins by scaling them so that the sum of the bins becomes equal
|
|
to factor.
|
|
|
|
@param hist Pointer to the histogram.
|
|
@param factor Normalization factor.
|
|
*/
|
|
CVAPI(void) cvNormalizeHist( CvHistogram* hist, double factor );
|
|
|
|
|
|
/** @brief Thresholds the histogram.
|
|
|
|
The function clears histogram bins that are below the specified threshold.
|
|
|
|
@param hist Pointer to the histogram.
|
|
@param threshold Threshold level.
|
|
*/
|
|
CVAPI(void) cvThreshHist( CvHistogram* hist, double threshold );
|
|
|
|
|
|
/** Compares two histogram */
|
|
CVAPI(double) cvCompareHist( const CvHistogram* hist1,
|
|
const CvHistogram* hist2,
|
|
int method);
|
|
|
|
/** @brief Copies a histogram.
|
|
|
|
The function makes a copy of the histogram. If the second histogram pointer \*dst is NULL, a new
|
|
histogram of the same size as src is created. Otherwise, both histograms must have equal types and
|
|
sizes. Then the function copies the bin values of the source histogram to the destination histogram
|
|
and sets the same bin value ranges as in src.
|
|
|
|
@param src Source histogram.
|
|
@param dst Pointer to the destination histogram.
|
|
*/
|
|
CVAPI(void) cvCopyHist( const CvHistogram* src, CvHistogram** dst );
|
|
|
|
|
|
/** @brief Calculates bayesian probabilistic histograms
|
|
(each or src and dst is an array of _number_ histograms */
|
|
CVAPI(void) cvCalcBayesianProb( CvHistogram** src, int number,
|
|
CvHistogram** dst);
|
|
|
|
/** @brief Calculates array histogram
|
|
@see cv::calcHist
|
|
*/
|
|
CVAPI(void) cvCalcArrHist( CvArr** arr, CvHistogram* hist,
|
|
int accumulate CV_DEFAULT(0),
|
|
const CvArr* mask CV_DEFAULT(NULL) );
|
|
|
|
/** @overload */
|
|
CV_INLINE void cvCalcHist( IplImage** image, CvHistogram* hist,
|
|
int accumulate CV_DEFAULT(0),
|
|
const CvArr* mask CV_DEFAULT(NULL) )
|
|
{
|
|
cvCalcArrHist( (CvArr**)image, hist, accumulate, mask );
|
|
}
|
|
|
|
/** @brief Calculates back project
|
|
@see cvCalcBackProject, cv::calcBackProject
|
|
*/
|
|
CVAPI(void) cvCalcArrBackProject( CvArr** image, CvArr* dst,
|
|
const CvHistogram* hist );
|
|
|
|
#define cvCalcBackProject(image, dst, hist) cvCalcArrBackProject((CvArr**)image, dst, hist)
|
|
|
|
|
|
/** @brief Locates a template within an image by using a histogram comparison.
|
|
|
|
The function calculates the back projection by comparing histograms of the source image patches with
|
|
the given histogram. The function is similar to matchTemplate, but instead of comparing the raster
|
|
patch with all its possible positions within the search window, the function CalcBackProjectPatch
|
|
compares histograms. See the algorithm diagram below:
|
|
|
|
![image](pics/backprojectpatch.png)
|
|
|
|
@param image Source images (though, you may pass CvMat\*\* as well).
|
|
@param dst Destination image.
|
|
@param range
|
|
@param hist Histogram.
|
|
@param method Comparison method passed to cvCompareHist (see the function description).
|
|
@param factor Normalization factor for histograms that affects the normalization scale of the
|
|
destination image. Pass 1 if not sure.
|
|
|
|
@see cvCalcBackProjectPatch
|
|
*/
|
|
CVAPI(void) cvCalcArrBackProjectPatch( CvArr** image, CvArr* dst, CvSize range,
|
|
CvHistogram* hist, int method,
|
|
double factor );
|
|
|
|
#define cvCalcBackProjectPatch( image, dst, range, hist, method, factor ) \
|
|
cvCalcArrBackProjectPatch( (CvArr**)image, dst, range, hist, method, factor )
|
|
|
|
|
|
/** @brief Divides one histogram by another.
|
|
|
|
The function calculates the object probability density from two histograms as:
|
|
|
|
\f[\texttt{disthist} (I)= \forkthree{0}{if \(\texttt{hist1}(I)=0\)}{\texttt{scale}}{if \(\texttt{hist1}(I) \ne 0\) and \(\texttt{hist2}(I) > \texttt{hist1}(I)\)}{\frac{\texttt{hist2}(I) \cdot \texttt{scale}}{\texttt{hist1}(I)}}{if \(\texttt{hist1}(I) \ne 0\) and \(\texttt{hist2}(I) \le \texttt{hist1}(I)\)}\f]
|
|
|
|
@param hist1 First histogram (the divisor).
|
|
@param hist2 Second histogram.
|
|
@param dst_hist Destination histogram.
|
|
@param scale Scale factor for the destination histogram.
|
|
*/
|
|
CVAPI(void) cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2,
|
|
CvHistogram* dst_hist, double scale CV_DEFAULT(255) );
|
|
|
|
/** @brief equalizes histogram of 8-bit single-channel image
|
|
@see cv::equalizeHist
|
|
*/
|
|
CVAPI(void) cvEqualizeHist( const CvArr* src, CvArr* dst );
|
|
|
|
|
|
/** @brief Applies distance transform to binary image
|
|
@see cv::distanceTransform
|
|
*/
|
|
CVAPI(void) cvDistTransform( const CvArr* src, CvArr* dst,
|
|
int distance_type CV_DEFAULT(CV_DIST_L2),
|
|
int mask_size CV_DEFAULT(3),
|
|
const float* mask CV_DEFAULT(NULL),
|
|
CvArr* labels CV_DEFAULT(NULL),
|
|
int labelType CV_DEFAULT(CV_DIST_LABEL_CCOMP));
|
|
|
|
|
|
/** @brief Applies fixed-level threshold to grayscale image.
|
|
|
|
This is a basic operation applied before retrieving contours
|
|
@see cv::threshold
|
|
*/
|
|
CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst,
|
|
double threshold, double max_value,
|
|
int threshold_type );
|
|
|
|
/** @brief Applies adaptive threshold to grayscale image.
|
|
|
|
The two parameters for methods CV_ADAPTIVE_THRESH_MEAN_C and
|
|
CV_ADAPTIVE_THRESH_GAUSSIAN_C are:
|
|
neighborhood size (3, 5, 7 etc.),
|
|
and a constant subtracted from mean (...,-3,-2,-1,0,1,2,3,...)
|
|
@see cv::adaptiveThreshold
|
|
*/
|
|
CVAPI(void) cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value,
|
|
int adaptive_method CV_DEFAULT(CV_ADAPTIVE_THRESH_MEAN_C),
|
|
int threshold_type CV_DEFAULT(CV_THRESH_BINARY),
|
|
int block_size CV_DEFAULT(3),
|
|
double param1 CV_DEFAULT(5));
|
|
|
|
/** @brief Fills the connected component until the color difference gets large enough
|
|
@see cv::floodFill
|
|
*/
|
|
CVAPI(void) cvFloodFill( CvArr* image, CvPoint seed_point,
|
|
CvScalar new_val, CvScalar lo_diff CV_DEFAULT(cvScalarAll(0)),
|
|
CvScalar up_diff CV_DEFAULT(cvScalarAll(0)),
|
|
CvConnectedComp* comp CV_DEFAULT(NULL),
|
|
int flags CV_DEFAULT(4),
|
|
CvArr* mask CV_DEFAULT(NULL));
|
|
|
|
/****************************************************************************************\
|
|
* Feature detection *
|
|
\****************************************************************************************/
|
|
|
|
/** @brief Runs canny edge detector
|
|
@see cv::Canny
|
|
*/
|
|
CVAPI(void) cvCanny( const CvArr* image, CvArr* edges, double threshold1,
|
|
double threshold2, int aperture_size CV_DEFAULT(3) );
|
|
|
|
/** @brief Calculates constraint image for corner detection
|
|
|
|
Dx^2 * Dyy + Dxx * Dy^2 - 2 * Dx * Dy * Dxy.
|
|
Applying threshold to the result gives coordinates of corners
|
|
@see cv::preCornerDetect
|
|
*/
|
|
CVAPI(void) cvPreCornerDetect( const CvArr* image, CvArr* corners,
|
|
int aperture_size CV_DEFAULT(3) );
|
|
|
|
/** @brief Calculates eigen values and vectors of 2x2
|
|
gradient covariation matrix at every image pixel
|
|
@see cv::cornerEigenValsAndVecs
|
|
*/
|
|
CVAPI(void) cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv,
|
|
int block_size, int aperture_size CV_DEFAULT(3) );
|
|
|
|
/** @brief Calculates minimal eigenvalue for 2x2 gradient covariation matrix at
|
|
every image pixel
|
|
@see cv::cornerMinEigenVal
|
|
*/
|
|
CVAPI(void) cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval,
|
|
int block_size, int aperture_size CV_DEFAULT(3) );
|
|
|
|
/** @brief Harris corner detector:
|
|
|
|
Calculates det(M) - k*(trace(M)^2), where M is 2x2 gradient covariation matrix for each pixel
|
|
@see cv::cornerHarris
|
|
*/
|
|
CVAPI(void) cvCornerHarris( const CvArr* image, CvArr* harris_response,
|
|
int block_size, int aperture_size CV_DEFAULT(3),
|
|
double k CV_DEFAULT(0.04) );
|
|
|
|
/** @brief Adjust corner position using some sort of gradient search
|
|
@see cv::cornerSubPix
|
|
*/
|
|
CVAPI(void) cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners,
|
|
int count, CvSize win, CvSize zero_zone,
|
|
CvTermCriteria criteria );
|
|
|
|
/** @brief Finds a sparse set of points within the selected region
|
|
that seem to be easy to track
|
|
@see cv::goodFeaturesToTrack
|
|
*/
|
|
CVAPI(void) cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image,
|
|
CvArr* temp_image, CvPoint2D32f* corners,
|
|
int* corner_count, double quality_level,
|
|
double min_distance,
|
|
const CvArr* mask CV_DEFAULT(NULL),
|
|
int block_size CV_DEFAULT(3),
|
|
int use_harris CV_DEFAULT(0),
|
|
double k CV_DEFAULT(0.04) );
|
|
|
|
/** @brief Finds lines on binary image using one of several methods.
|
|
|
|
line_storage is either memory storage or 1 x _max number of lines_ CvMat, its
|
|
number of columns is changed by the function.
|
|
method is one of CV_HOUGH_*;
|
|
rho, theta and threshold are used for each of those methods;
|
|
param1 ~ line length, param2 ~ line gap - for probabilistic,
|
|
param1 ~ srn, param2 ~ stn - for multi-scale
|
|
@see cv::HoughLines
|
|
*/
|
|
CVAPI(CvSeq*) cvHoughLines2( CvArr* image, void* line_storage, int method,
|
|
double rho, double theta, int threshold,
|
|
double param1 CV_DEFAULT(0), double param2 CV_DEFAULT(0),
|
|
double min_theta CV_DEFAULT(0), double max_theta CV_DEFAULT(CV_PI));
|
|
|
|
/** @brief Finds circles in the image
|
|
@see cv::HoughCircles
|
|
*/
|
|
CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage,
|
|
int method, double dp, double min_dist,
|
|
double param1 CV_DEFAULT(100),
|
|
double param2 CV_DEFAULT(100),
|
|
int min_radius CV_DEFAULT(0),
|
|
int max_radius CV_DEFAULT(0));
|
|
|
|
/** @brief Fits a line into set of 2d or 3d points in a robust way (M-estimator technique)
|
|
@see cv::fitLine
|
|
*/
|
|
CVAPI(void) cvFitLine( const CvArr* points, int dist_type, double param,
|
|
double reps, double aeps, float* line );
|
|
|
|
/****************************************************************************************\
|
|
* Drawing *
|
|
\****************************************************************************************/
|
|
|
|
/****************************************************************************************\
|
|
* Drawing functions work with images/matrices of arbitrary type. *
|
|
* For color images the channel order is BGR[A] *
|
|
* Antialiasing is supported only for 8-bit image now. *
|
|
* All the functions include parameter color that means rgb value (that may be *
|
|
* constructed with CV_RGB macro) for color images and brightness *
|
|
* for grayscale images. *
|
|
* If a drawn figure is partially or completely outside of the image, it is clipped.*
|
|
\****************************************************************************************/
|
|
|
|
#define CV_FILLED -1
|
|
|
|
#define CV_AA 16
|
|
|
|
/** @brief Draws 4-connected, 8-connected or antialiased line segment connecting two points
|
|
@see cv::line
|
|
*/
|
|
CVAPI(void) cvLine( CvArr* img, CvPoint pt1, CvPoint pt2,
|
|
CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
|
|
|
/** @brief Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2)
|
|
|
|
if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn
|
|
@see cv::rectangle
|
|
*/
|
|
CVAPI(void) cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2,
|
|
CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8),
|
|
int shift CV_DEFAULT(0));
|
|
|
|
/** @brief Draws a rectangle specified by a CvRect structure
|
|
@see cv::rectangle
|
|
*/
|
|
CVAPI(void) cvRectangleR( CvArr* img, CvRect r,
|
|
CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8),
|
|
int shift CV_DEFAULT(0));
|
|
|
|
|
|
/** @brief Draws a circle with specified center and radius.
|
|
|
|
Thickness works in the same way as with cvRectangle
|
|
@see cv::circle
|
|
*/
|
|
CVAPI(void) cvCircle( CvArr* img, CvPoint center, int radius,
|
|
CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
|
|
|
|
/** @brief Draws ellipse outline, filled ellipse, elliptic arc or filled elliptic sector
|
|
|
|
depending on _thickness_, _start_angle_ and _end_angle_ parameters. The resultant figure
|
|
is rotated by _angle_. All the angles are in degrees
|
|
@see cv::ellipse
|
|
*/
|
|
CVAPI(void) cvEllipse( CvArr* img, CvPoint center, CvSize axes,
|
|
double angle, double start_angle, double end_angle,
|
|
CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
|
|
|
|
CV_INLINE void cvEllipseBox( CvArr* img, CvBox2D box, CvScalar color,
|
|
int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) )
|
|
{
|
|
CvSize axes = cvSize(
|
|
cvRound(box.size.width*0.5),
|
|
cvRound(box.size.height*0.5)
|
|
);
|
|
|
|
cvEllipse( img, cvPointFrom32f( box.center ), axes, box.angle,
|
|
0, 360, color, thickness, line_type, shift );
|
|
}
|
|
|
|
/** @brief Fills convex or monotonous polygon.
|
|
@see cv::fillConvexPoly
|
|
*/
|
|
CVAPI(void) cvFillConvexPoly( CvArr* img, const CvPoint* pts, int npts, CvScalar color,
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
|
|
|
|
/** @brief Fills an area bounded by one or more arbitrary polygons
|
|
@see cv::fillPoly
|
|
*/
|
|
CVAPI(void) cvFillPoly( CvArr* img, CvPoint** pts, const int* npts,
|
|
int contours, CvScalar color,
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
|
|
|
/** @brief Draws one or more polygonal curves
|
|
@see cv::polylines
|
|
*/
|
|
CVAPI(void) cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours,
|
|
int is_closed, CvScalar color, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
|
|
|
#define cvDrawRect cvRectangle
|
|
#define cvDrawLine cvLine
|
|
#define cvDrawCircle cvCircle
|
|
#define cvDrawEllipse cvEllipse
|
|
#define cvDrawPolyLine cvPolyLine
|
|
|
|
/** @brief Clips the line segment connecting *pt1 and *pt2
|
|
by the rectangular window
|
|
|
|
(0<=x<img_size.width, 0<=y<img_size.height).
|
|
@see cv::clipLine
|
|
*/
|
|
CVAPI(int) cvClipLine( CvSize img_size, CvPoint* pt1, CvPoint* pt2 );
|
|
|
|
/** @brief Initializes line iterator.
|
|
|
|
Initially, line_iterator->ptr will point to pt1 (or pt2, see left_to_right description) location in
|
|
the image. Returns the number of pixels on the line between the ending points.
|
|
@see cv::LineIterator
|
|
*/
|
|
CVAPI(int) cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2,
|
|
CvLineIterator* line_iterator,
|
|
int connectivity CV_DEFAULT(8),
|
|
int left_to_right CV_DEFAULT(0));
|
|
|
|
#define CV_NEXT_LINE_POINT( line_iterator ) \
|
|
{ \
|
|
int _line_iterator_mask = (line_iterator).err < 0 ? -1 : 0; \
|
|
(line_iterator).err += (line_iterator).minus_delta + \
|
|
((line_iterator).plus_delta & _line_iterator_mask); \
|
|
(line_iterator).ptr += (line_iterator).minus_step + \
|
|
((line_iterator).plus_step & _line_iterator_mask); \
|
|
}
|
|
|
|
|
|
#define CV_FONT_HERSHEY_SIMPLEX 0
|
|
#define CV_FONT_HERSHEY_PLAIN 1
|
|
#define CV_FONT_HERSHEY_DUPLEX 2
|
|
#define CV_FONT_HERSHEY_COMPLEX 3
|
|
#define CV_FONT_HERSHEY_TRIPLEX 4
|
|
#define CV_FONT_HERSHEY_COMPLEX_SMALL 5
|
|
#define CV_FONT_HERSHEY_SCRIPT_SIMPLEX 6
|
|
#define CV_FONT_HERSHEY_SCRIPT_COMPLEX 7
|
|
|
|
#define CV_FONT_ITALIC 16
|
|
|
|
#define CV_FONT_VECTOR0 CV_FONT_HERSHEY_SIMPLEX
|
|
|
|
|
|
/** Font structure */
|
|
typedef struct CvFont
|
|
{
|
|
const char* nameFont; //Qt:nameFont
|
|
CvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red_component[, alpha_component])
|
|
int font_face; //Qt: bool italic /** =CV_FONT_* */
|
|
const int* ascii; //!< font data and metrics
|
|
const int* greek;
|
|
const int* cyrillic;
|
|
float hscale, vscale;
|
|
float shear; //!< slope coefficient: 0 - normal, >0 - italic
|
|
int thickness; //!< Qt: weight /** letters thickness */
|
|
float dx; //!< horizontal interval between letters
|
|
int line_type; //!< Qt: PointSize
|
|
}
|
|
CvFont;
|
|
|
|
/** @brief Initializes font structure (OpenCV 1.x API).
|
|
|
|
The function initializes the font structure that can be passed to text rendering functions.
|
|
|
|
@param font Pointer to the font structure initialized by the function
|
|
@param font_face Font name identifier. See cv::HersheyFonts and corresponding old CV_* identifiers.
|
|
@param hscale Horizontal scale. If equal to 1.0f , the characters have the original width
|
|
depending on the font type. If equal to 0.5f , the characters are of half the original width.
|
|
@param vscale Vertical scale. If equal to 1.0f , the characters have the original height depending
|
|
on the font type. If equal to 0.5f , the characters are of half the original height.
|
|
@param shear Approximate tangent of the character slope relative to the vertical line. A zero
|
|
value means a non-italic font, 1.0f means about a 45 degree slope, etc.
|
|
@param thickness Thickness of the text strokes
|
|
@param line_type Type of the strokes, see line description
|
|
|
|
@sa cvPutText
|
|
*/
|
|
CVAPI(void) cvInitFont( CvFont* font, int font_face,
|
|
double hscale, double vscale,
|
|
double shear CV_DEFAULT(0),
|
|
int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8));
|
|
|
|
CV_INLINE CvFont cvFont( double scale, int thickness CV_DEFAULT(1) )
|
|
{
|
|
CvFont font;
|
|
cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, scale, scale, 0, thickness, CV_AA );
|
|
return font;
|
|
}
|
|
|
|
/** @brief Renders text stroke with specified font and color at specified location.
|
|
CvFont should be initialized with cvInitFont
|
|
@see cvInitFont, cvGetTextSize, cvFont, cv::putText
|
|
*/
|
|
CVAPI(void) cvPutText( CvArr* img, const char* text, CvPoint org,
|
|
const CvFont* font, CvScalar color );
|
|
|
|
/** @brief Calculates bounding box of text stroke (useful for alignment)
|
|
@see cv::getTextSize
|
|
*/
|
|
CVAPI(void) cvGetTextSize( const char* text_string, const CvFont* font,
|
|
CvSize* text_size, int* baseline );
|
|
|
|
/** @brief Unpacks color value
|
|
|
|
if arrtype is CV_8UC?, _color_ is treated as packed color value, otherwise the first channels
|
|
(depending on arrtype) of destination scalar are set to the same value = _color_
|
|
*/
|
|
CVAPI(CvScalar) cvColorToScalar( double packed_color, int arrtype );
|
|
|
|
/** @brief Returns the polygon points which make up the given ellipse.
|
|
|
|
The ellipse is define by the box of size 'axes' rotated 'angle' around the 'center'. A partial
|
|
sweep of the ellipse arc can be done by specifying arc_start and arc_end to be something other than
|
|
0 and 360, respectively. The input array 'pts' must be large enough to hold the result. The total
|
|
number of points stored into 'pts' is returned by this function.
|
|
@see cv::ellipse2Poly
|
|
*/
|
|
CVAPI(int) cvEllipse2Poly( CvPoint center, CvSize axes,
|
|
int angle, int arc_start, int arc_end, CvPoint * pts, int delta );
|
|
|
|
/** @brief Draws contour outlines or filled interiors on the image
|
|
@see cv::drawContours
|
|
*/
|
|
CVAPI(void) cvDrawContours( CvArr *img, CvSeq* contour,
|
|
CvScalar external_color, CvScalar hole_color,
|
|
int max_level, int thickness CV_DEFAULT(1),
|
|
int line_type CV_DEFAULT(8),
|
|
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
|
|
|
/** @} */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|