pluto_hdl_adi/library/xilinx/axi_adcfifo/axi_adcfifo_adc.v

127 lines
4.4 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_adcfifo_adc #(
parameter ADC_DATA_WIDTH = 128,
parameter AXI_DATA_WIDTH = 512
) (
// fifo interface
input adc_rst,
input adc_clk,
input adc_wr,
input [ADC_DATA_WIDTH-1:0] adc_wdata,
output reg adc_wovf,
output reg adc_dwr,
output reg [AXI_DATA_WIDTH-1:0] adc_ddata,
// axi interface
input axi_drst,
input axi_clk,
input [ 3:0] axi_xfer_status
);
localparam ADC_MEM_RATIO = AXI_DATA_WIDTH/ADC_DATA_WIDTH;
// internal registers
reg [ 2:0] adc_wcnt_int = 'd0;
// internal signals
wire [ 3:0] adc_xfer_status_s;
// write interface: supports only 64, 128, 256 and 512 against 512
always @(posedge adc_clk) begin
if (adc_rst == 1'b1) begin
adc_wovf <= 'd0;
adc_wcnt_int <= 'd0;
adc_dwr <= 'd0;
adc_ddata <= 'd0;
end else begin
adc_wovf <= | adc_xfer_status_s;
adc_dwr <= (ADC_MEM_RATIO == 8) ? adc_wr & adc_wcnt_int[0] & adc_wcnt_int[1] & adc_wcnt_int[2] :
(ADC_MEM_RATIO == 4) ? adc_wr & adc_wcnt_int[0] & adc_wcnt_int[1] :
(ADC_MEM_RATIO == 2) ? adc_wr & adc_wcnt_int[0] :
(ADC_MEM_RATIO == 1) ? adc_wr : 'd0;
if (adc_wr == 1'b1) begin
adc_wcnt_int <= adc_wcnt_int + 1'b1;
case (ADC_MEM_RATIO)
8: begin
adc_ddata[((ADC_DATA_WIDTH*8)-1):(ADC_DATA_WIDTH*7)] <= adc_wdata;
adc_ddata[((ADC_DATA_WIDTH*7)-1):(ADC_DATA_WIDTH*0)] <=
adc_ddata[((ADC_DATA_WIDTH*8)-1):(ADC_DATA_WIDTH*1)];
end
4: begin
adc_ddata[((ADC_DATA_WIDTH*4)-1):(ADC_DATA_WIDTH*3)] <= adc_wdata;
adc_ddata[((ADC_DATA_WIDTH*3)-1):(ADC_DATA_WIDTH*0)] <=
adc_ddata[((ADC_DATA_WIDTH*4)-1):(ADC_DATA_WIDTH*1)];
end
2: begin
adc_ddata[((ADC_DATA_WIDTH*2)-1):(ADC_DATA_WIDTH*1)] <= adc_wdata;
adc_ddata[((ADC_DATA_WIDTH*1)-1):(ADC_DATA_WIDTH*0)] <=
adc_ddata[((ADC_DATA_WIDTH*2)-1):(ADC_DATA_WIDTH*1)];
end
1: begin
adc_ddata <= adc_wdata;
end
default: begin
adc_ddata <= 'd0;
end
endcase
end
end
end
// instantiations
up_xfer_status #(
.DATA_WIDTH(4)
) i_xfer_status (
.up_rstn (~adc_rst),
.up_clk (adc_clk),
.up_data_status (adc_xfer_status_s),
.d_rst (axi_drst),
.d_clk (axi_clk),
.d_data_status (axi_xfer_status));
endmodule