pluto_hdl_adi/library/axi_ad7616/axi_ad7616_pif.v

255 lines
8.0 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2015(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_ad7616_pif (
// physical interface
cs_n,
db_o,
db_i,
db_t,
rd_n,
wr_n,
// axi stream master
m_axis_tdata,
m_axis_tvalid,
m_axis_tready,
m_axis_xfer_req,
// end of convertion
end_of_conv,
burst_length,
// register access
clk,
rstn,
rd_req,
wr_req,
wr_data,
rd_data,
rd_dvalid
);
parameter UP_ADDRESS_WIDTH = 14;
// IO definitions
output cs_n;
output [15:0] db_o;
input [15:0] db_i;
output db_t;
output rd_n;
output wr_n;
input end_of_conv;
input [ 4:0] burst_length;
input clk;
input rstn;
input rd_req;
input wr_req;
input [15:0] wr_data;
output [15:0] rd_data;
output rd_dvalid;
output [31:0] m_axis_tdata;
input m_axis_tready;
output m_axis_tvalid;
input m_axis_xfer_req;
// state registers
localparam [ 2:0] IDLE = 3'h0,
CS_LOW = 3'h1,
CNTRL0_LOW = 3'h2,
CNTRL0_HIGH = 3'h3,
CNTRL1_LOW = 3'h4,
CNTRL1_HIGH = 3'h5,
CS_HIGH = 3'h6;
// internal registers
reg [ 2:0] transfer_state = 3'h0;
reg [ 2:0] transfer_state_next = 3'h0;
reg [ 1:0] counter = 2'h0;
reg [ 4:0] burst_counter = 5'h0;
reg wr_req_d = 1'h0;
reg rd_req_d = 1'h0;
reg rd_conv_d = 1'h0;
reg xfer_req_d = 1'h0;
reg [15:0] data_out_a = 16'h0;
reg [15:0] data_out_b = 16'h0;
reg rd_db_valid_div2 = 1'h0;
// internal wires
wire start_transfer;
wire rd_db_valid;
// FSM state register
always @(posedge clk) begin
if (rstn == 1'b0) begin
transfer_state <= 3'h0;
end else begin
transfer_state <= transfer_state_next;
end
end
// counters to control the RD_N and WR_N lines
assign start_transfer = end_of_conv | rd_req | wr_req;
always @(posedge clk) begin
if (rstn == 1'b0) begin
counter <= 2'h0;
end else begin
if((transfer_state == CNTRL0_LOW) || (transfer_state == CNTRL0_HIGH) ||
(transfer_state == CNTRL1_LOW) || (transfer_state == CNTRL1_HIGH))
counter <= counter + 1;
else
counter <= 2'h0;
end
end
always @(posedge clk) begin
if (rstn == 1'b0) begin
burst_counter <= 2'h0;
end else begin
if((transfer_state == CS_HIGH) && (rd_conv_d == 1'b1))
burst_counter <= burst_counter + 1;
else if (transfer_state == IDLE)
burst_counter <= 5'h0;
end
end
always @(negedge clk) begin
if (transfer_state == IDLE) begin
wr_req_d <= wr_req;
rd_req_d <= rd_req;
rd_conv_d <= end_of_conv;
end
end
// FSM next state logic
always @(*) begin
case (transfer_state)
IDLE : begin
transfer_state_next <= (start_transfer == 1'b1) ? CS_LOW : IDLE;
end
CS_LOW : begin
transfer_state_next <= CNTRL0_LOW;
end
CNTRL0_LOW : begin
transfer_state_next <= (counter != 2'b11) ? CNTRL0_LOW : CNTRL0_HIGH;
end
CNTRL0_HIGH : begin
transfer_state_next <= (counter != 2'b11) ? CNTRL0_HIGH :
((wr_req_d == 1'b1) || (rd_req_d == 1'b1)) ? CS_HIGH : CNTRL1_LOW;
end
CNTRL1_LOW : begin
transfer_state_next <= (counter != 2'b11) ? CNTRL1_LOW : CNTRL1_HIGH;
end
CNTRL1_HIGH : begin
transfer_state_next <= (counter != 2'b11) ? CNTRL1_HIGH : CS_HIGH;
end
CS_HIGH : begin
transfer_state_next <= (burst_length == burst_counter) ? IDLE : CNTRL0_LOW;
end
default : begin
transfer_state_next <= IDLE;
end
endcase
end
// data valid for the register access and m_axis interface
assign rd_db_valid = ((counter == 2'b0) && ((transfer_state == CNTRL0_HIGH) || (transfer_state == CNTRL1_HIGH))) ? 1'b1 : 1'b0;
always @(posedge clk) begin
if (cs_n) begin
rd_db_valid_div2 <= 1'h0;
end else begin
rd_db_valid_div2 <= (rd_db_valid) ? ~rd_db_valid_div2 : rd_db_valid_div2;
end
end
// FSM output logic
assign db_o = wr_data;
always @(posedge clk) begin
data_out_a <= (rd_db_valid) ? db_i : data_out_a;
data_out_b <= (rd_db_valid) ? data_out_a : data_out_b;
end
assign rd_data = data_out_a;
assign rd_dvalid = rd_db_valid;
assign cs_n = (transfer_state == IDLE) ? 1'b1 : 1'b0;
assign db_t = ~wr_req_d;
assign rd_n = (((transfer_state == CNTRL0_LOW) && ((rd_conv_d == 1'b1) || rd_req_d == 1'b1)) ||
(transfer_state == CNTRL1_LOW)) ? 1'b0 : 1'b1;
assign wr_n = ((transfer_state == CNTRL0_LOW) && (wr_req_d == 1'b1)) ? 1'b0 : 1'b1;
// Master AXI stream output logic with additional xfer_req signal
// The first valid data is ALWAYS the first sample of a convertion
always @(negedge clk) begin
if (end_of_conv == 1'b1)
xfer_req_d <= m_axis_xfer_req;
end
assign m_axis_tdata = rd_data;
assign m_axis_tvalid = xfer_req_d & rd_db_valid & rd_db_valid_div2;
endmodule