pluto_hdl_adi/library/common/ad_mux.v

118 lines
4.1 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright (C) 2020-2023 Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
// Constraints : CH_CNT must be power of 2
// Build a large mux from smaller ones defined by the MUX_SZ parameter
// Use EN_REG to add a register at the output of the small muxes to help
// timing closure.
module ad_mux #(
parameter CH_W = 16, // Width of input channel
parameter CH_CNT = 64, // Number of input channels
parameter REQ_MUX_SZ = 8, // Size of mux which acts as a building block
parameter EN_REG = 1, // Enable register at output of each mux
parameter DW = CH_W*CH_CNT
) (
input clk,
input [DW-1:0] data_in,
input [$clog2(CH_CNT)-1:0] ch_sel,
output [CH_W-1:0] data_out
);
`define MIN(A,B) (A<B?A:B)
localparam MUX_SZ = CH_CNT < REQ_MUX_SZ ? CH_CNT : REQ_MUX_SZ;
localparam CLOG2_CH_CNT = $clog2(CH_CNT);
localparam CLOG2_MUX_SZ = $clog2(MUX_SZ);
localparam NUM_STAGES = ($clog2(CH_CNT) / $clog2(MUX_SZ)) + // divide and round up
|($clog2(CH_CNT) % $clog2(MUX_SZ));
wire [NUM_STAGES*DW+CH_W-1:0] mux_in;
wire [NUM_STAGES*CLOG2_CH_CNT-1:0] ch_sel_pln;
assign mux_in[DW-1:0] = data_in;
assign ch_sel_pln[CLOG2_CH_CNT-1:0] = ch_sel;
genvar i;
genvar j;
generate
for (i = 0; i < NUM_STAGES; i = i + 1) begin: g_stage
wire [CLOG2_CH_CNT-1:0] ch_sel_cur;
assign ch_sel_cur = ch_sel_pln[i*CLOG2_CH_CNT+:CLOG2_CH_CNT];
wire [CLOG2_MUX_SZ-1:0] ch_sel_w;
assign ch_sel_w = ch_sel_cur >> i*CLOG2_MUX_SZ;
if (EN_REG) begin
reg [CLOG2_CH_CNT-1:0] ch_sel_d;
always @(posedge clk) begin
ch_sel_d <= ch_sel_cur;
end
if (i<NUM_STAGES-1) begin
assign ch_sel_pln[(i+1)*CLOG2_CH_CNT+:CLOG2_CH_CNT] = ch_sel_d;
end
end else begin
if (i<NUM_STAGES-1) begin
assign ch_sel_pln[(i+1)*CLOG2_CH_CNT+:CLOG2_CH_CNT] = ch_sel_cur;
end
end
localparam MAX_RANGE_PER_STAGE=MUX_SZ**(NUM_STAGES-i);
for (j = 0; j < `MIN(MAX_RANGE_PER_STAGE,CH_CNT); j = j + MUX_SZ) begin: g_mux
ad_mux_core #(
.CH_W (CH_W),
.CH_CNT (MUX_SZ),
.EN_REG (EN_REG)
) i_mux (
.clk (clk),
.data_in (mux_in[i*DW+j*CH_W+:MUX_SZ*CH_W]),
.ch_sel (ch_sel_w),
.data_out (mux_in[(i+1)*DW+(j/MUX_SZ)*CH_W+:CH_W]));
end
end
endgenerate
assign data_out = mux_in[NUM_STAGES*DW+:CH_W];
endmodule