pluto_hdl_adi/projects/daq1/cpld/daq1_cpld.v

259 lines
8.1 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module daq1_cpld (
// FMC SPI interface
input fmc_spi_sclk,
input fmc_spi_csn,
inout fmc_spi_sdio,
output fmc_irq,
// on board SPI interface
output adc_spicsn,
output dac_spicsn,
output clk_spicsn,
output sclk,
inout sdio,
// control and status lines
input adc_fda,
input adc_fdb,
input adc_status_p,
input adc_status_n,
output adc_pwdn_stby,
input dac_irqn,
output dac_resetn,
input clk_status1,
input clk_status2,
output clk_pwdnn,
output clk_syncn,
output clk_resetn
);
// FMC SPI Selects
localparam [ 7:0] FMC_SPI_SEL_AD9684 = 8'h80;
localparam [ 7:0] FMC_SPI_SEL_AD9122 = 8'h81;
localparam [ 7:0] FMC_SPI_SEL_AD9523 = 8'h82;
localparam [ 7:0] FMC_SPI_SEL_CPLD = 8'h83;
// CPLD Register Map Addresses
localparam [ 6:0] CPLD_VERSION_ADDR = 7'h00;
localparam [ 6:0] ADC_CONTROL_ADDR = 7'h10;
localparam [ 6:0] DAC_CONTROL_ADDR = 7'h11;
localparam [ 6:0] CLK_CONTROL_ADDR = 7'h12;
localparam [ 6:0] IRQ_MASK_ADDR = 7'h13;
localparam [ 6:0] ADC_STATUS_ADDR = 7'h20;
localparam [ 6:0] DAC_STATUS_ADDR = 7'h21;
localparam [ 6:0] CLK_STATUS_ADDR = 7'h22;
2016-03-04 16:51:20 +00:00
localparam [ 7:0] CPLD_VERSION = 8'h11;
// Internal Registers/Signals
reg [ 7:0] fmc_spi_dev_sel = 8'b0;
reg [ 7:0] fmc_cpld_addr = 8'b0;
reg [ 5:0] fmc_spi_counter = 6'b0;
reg fmc_spi_csn_enb = 1'b1;
reg [ 7:0] adc_control = 8'b0;
reg [ 7:0] dac_control = 8'b0;
reg [ 7:0] clk_control = 8'b0;
reg [ 7:0] adc_status = 8'b0;
reg [ 7:0] dac_status = 8'b0;
reg [ 7:0] clk_status = 8'b0;
reg cpld_to_fpga = 1'b0;
reg [ 7:0] cpld_rdata = 8'b0;
reg cpld_rdata_bit = 1'b0;
reg [ 2:0] cpld_rdata_index = 3'h0;
reg [ 7:0] cpld_wdata = 8'b0;
reg [ 7:0] cpld_irq_mask = 8'b0;
reg [ 7:0] cpld_irq = 8'b0;
wire rdnwr;
wire cpld_rdata_s;
// SCLK counter for control signals
always @(posedge fmc_spi_sclk or posedge fmc_spi_csn) begin
if (fmc_spi_csn == 1'b1) begin
fmc_spi_dev_sel <= 8'h0;
fmc_cpld_addr <= 8'h0;
end else begin
if (fmc_spi_counter <= 7) begin
fmc_spi_dev_sel <= {fmc_spi_dev_sel[6:0], fmc_spi_sdio};
end
if (fmc_spi_counter <= 15) begin
fmc_cpld_addr <= {fmc_cpld_addr[6:0], fmc_spi_sdio};
end
end
end
// chip select control
assign adc_spicsn = (fmc_spi_dev_sel == FMC_SPI_SEL_AD9684) ? (fmc_spi_csn | fmc_spi_csn_enb) : 1'b1;
assign dac_spicsn = (fmc_spi_dev_sel == FMC_SPI_SEL_AD9122) ? (fmc_spi_csn | fmc_spi_csn_enb) : 1'b1;
assign clk_spicsn = (fmc_spi_dev_sel == FMC_SPI_SEL_AD9523) ? (fmc_spi_csn | fmc_spi_csn_enb) : 1'b1;
assign cpld_spicsn = (fmc_spi_dev_sel == FMC_SPI_SEL_CPLD) ? (fmc_spi_csn | fmc_spi_csn_enb) : 1'b1;
// SPI control and data
assign sdio = cpld_to_fpga ? 1'bZ : fmc_spi_sdio;
assign fmc_spi_sdio = cpld_to_fpga ? cpld_rdata_s : 1'bZ ;
assign cpld_rdata_s = cpld_spicsn ? sdio : cpld_rdata_bit;
assign rdnwr = fmc_cpld_addr[7];
2016-03-04 16:56:21 +00:00
assign sclk = (~(fmc_spi_csn | fmc_spi_csn_enb)) ? fmc_spi_sclk : 1'b0;
always @(negedge fmc_spi_sclk or posedge fmc_spi_csn) begin
if (fmc_spi_csn == 1'b1) begin
fmc_spi_counter <= 6'h0;
cpld_to_fpga <= 1'b0;
fmc_spi_csn_enb <= 1'b1;
end else begin
fmc_spi_counter <= (fmc_spi_counter <= 6'h3F) ? fmc_spi_counter + 1 : fmc_spi_counter;
fmc_spi_csn_enb <= (fmc_spi_counter < 7) ? 1'b1 : 1'b0;
if (adc_spicsn & clk_spicsn) begin
cpld_to_fpga <= (fmc_spi_counter >= 15) ? rdnwr : 1'b0;
end else begin
cpld_to_fpga <= (fmc_spi_counter >= 23) ? rdnwr : 1'b0;
end
end
end
// Internal register read access
always @(fmc_cpld_addr) begin
case (fmc_cpld_addr[6:0])
CPLD_VERSION_ADDR :
cpld_rdata <= CPLD_VERSION;
ADC_CONTROL_ADDR :
cpld_rdata <= adc_pwdn_stby;
DAC_CONTROL_ADDR :
cpld_rdata <= dac_resetn;
CLK_CONTROL_ADDR :
cpld_rdata <= {clk_syncn, clk_resetn, clk_pwdnn};
IRQ_MASK_ADDR:
cpld_rdata <= cpld_irq_mask;
ADC_STATUS_ADDR :
cpld_rdata <= {adc_status_p, adc_fdb, adc_fda};
DAC_STATUS_ADDR :
cpld_rdata <= dac_irqn;
CLK_STATUS_ADDR :
cpld_rdata <= {clk_status2, clk_status1};
default:
cpld_rdata <= 8'hFA;
endcase
end
always @(negedge fmc_spi_sclk or posedge fmc_spi_csn) begin
if (fmc_spi_csn == 1'b1) begin
2016-03-04 16:56:21 +00:00
cpld_rdata_bit <= cpld_rdata[7];
cpld_rdata_index <= 3'h6;
end else begin
if (cpld_to_fpga == 1'b1) begin
cpld_rdata_bit <= cpld_rdata[cpld_rdata_index];
cpld_rdata_index <= cpld_rdata_index - 1;
end
end
end
// Internal register write access
always @(cpld_to_fpga, cpld_spicsn, fmc_spi_counter) begin
if ((cpld_to_fpga == 1'b0) &&
(cpld_spicsn == 1'b0) &&
(fmc_spi_counter == 8'h18)) begin
case (fmc_cpld_addr[6:0])
ADC_CONTROL_ADDR :
adc_control <= cpld_wdata;
DAC_CONTROL_ADDR :
dac_control <= cpld_wdata;
CLK_CONTROL_ADDR :
clk_control <= cpld_wdata;
IRQ_MASK_ADDR:
cpld_irq_mask <= cpld_wdata;
endcase
end
end
always @(posedge fmc_spi_sclk or posedge fmc_spi_csn) begin
if (fmc_spi_csn == 1'b1) begin
cpld_wdata <= 8'h0;
end else begin
if (fmc_spi_counter >= 16) begin
cpld_wdata <= {cpld_wdata[6:0], fmc_spi_sdio};
end
end
end
// input/output logic
// AD9648
assign adc_pwdn_stby = adc_control[0];
// AD9122
assign dac_resetn = dac_control[0];
// AD9523-1
assign clk_pwdnn = clk_control[0];
assign clk_resetn = clk_control[1];
assign clk_syncn = clk_control[2];
// interrupt logic
always @(*) begin
cpld_irq <= {2'b00, dac_irqn, clk_status2, clk_status1, adc_status_p, adc_fdb, adc_fda};
end
assign fmc_irq = |(~cpld_irq_mask & cpld_irq);
endmodule