pluto_hdl_adi/library/xilinx/axi_dacfifo/axi_dacfifo_rd.v

477 lines
17 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
2018-03-14 14:45:47 +00:00
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_dacfifo_rd #(
parameter AXI_DATA_WIDTH = 512,
parameter AXI_SIZE = 2,
parameter AXI_LENGTH = 15,
parameter AXI_ADDRESS = 32'h00000000,
parameter DAC_DATA_WIDTH = 64,
parameter DAC_MEM_ADDRESS_WIDTH = 8) (
// xfer last for read/write synchronization
input axi_xfer_req,
input [31:0] axi_last_raddr,
input [ 7:0] axi_last_beats,
// axi read address and read data channels
input axi_clk,
input axi_resetn,
output reg axi_arvalid,
output [ 3:0] axi_arid,
output [ 1:0] axi_arburst,
output axi_arlock,
output [ 3:0] axi_arcache,
output [ 2:0] axi_arprot,
output [ 3:0] axi_arqos,
output [ 7:0] axi_arlen,
output [ 2:0] axi_arsize,
output reg [31:0] axi_araddr,
input axi_arready,
input axi_rvalid,
input [ 3:0] axi_rid,
input [ 1:0] axi_rresp,
input axi_rlast,
input [(AXI_DATA_WIDTH-1):0] axi_rdata,
output reg axi_rready,
// axi status
output reg axi_rerror,
// DAC interface
input [ 3:0] dma_last_beats,
input dac_clk,
input dac_rst,
input dac_valid,
output [(DAC_DATA_WIDTH-1):0] dac_data,
output dac_xfer_out,
output reg dac_dunf);
localparam AXI_BYTE_WIDTH = AXI_DATA_WIDTH/8;
localparam AXI_ARINCR = (AXI_LENGTH + 1) * AXI_BYTE_WIDTH;
localparam MEM_RATIO = AXI_DATA_WIDTH/DAC_DATA_WIDTH;
localparam AXI_MEM_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_MEM_ADDRESS_WIDTH :
(MEM_RATIO == 2) ? (DAC_MEM_ADDRESS_WIDTH - 1) :
(MEM_RATIO == 4) ? (DAC_MEM_ADDRESS_WIDTH - 2) :
(DAC_MEM_ADDRESS_WIDTH - 3);
localparam AXI_BUF_THRESHOLD_HI = 2 * (AXI_LENGTH+1);
localparam DAC_BUF_THRESHOLD_HI = 2 * (AXI_LENGTH+1) * MEM_RATIO;
localparam IDLE = 5'b00001;
localparam XFER_STAGING = 5'b00010;
localparam XFER_FULL_BURST = 5'b00100;
localparam XFER_PARTIAL_BURST = 5'b01000;
localparam XFER_END = 5'b10000;
// internal registers
reg axi_ractive = 1'b0;
reg [ 1:0] axi_xfer_req_m = 2'b0;
reg [ 7:0] axi_last_beats_cntr = 8'b0;
reg axi_data_req = 1'b0;
reg [(AXI_DATA_WIDTH-1):0] axi_ddata = 'b0;
reg axi_dlast = 1'b0;
reg axi_dvalid = 1'b0;
reg [ 4:0] axi_read_state = 5'b0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_laddr = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_g = 'd0;
reg axi_mem_laddr_toggle = 1'b0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_m1 = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2 = 'd0;
reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'd0;
reg [31:0] axi_araddr_prev = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_waddr = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_laddr = 'd0;
reg [ 3:0] dac_mem_laddr_toggle_m = 4'd0;
reg [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_laddr_b = 'd0;
reg dac_mem_valid = 1'b0;
reg dac_mem_enable = 1'b0;
reg [ 2:0] dac_xfer_req_m = 3'b0;
reg [ 3:0] dac_last_beats = 4'b0;
reg [ 3:0] dac_last_beats_m = 4'b0;
// internal signals
wire axi_fifo_reset_s;
wire axi_dvalid_s;
wire axi_dlast_s;
wire [ AXI_MEM_ADDRESS_WIDTH:0] axi_mem_addr_diff_s;
wire [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_laddr_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_b2g_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_laddr_b2g_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2_g2b_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_laddr_m2_g2b_s;
wire [ DAC_MEM_ADDRESS_WIDTH:0] dac_mem_addr_diff_s;
wire [(DAC_MEM_ADDRESS_WIDTH-1):0] dac_mem_laddr_s;
// Asymmetric memory to transfer data from AXI_MM interface to DAC FIFO
// interface
ad_mem_asym #(
.A_ADDRESS_WIDTH (AXI_MEM_ADDRESS_WIDTH),
.A_DATA_WIDTH (AXI_DATA_WIDTH),
.B_ADDRESS_WIDTH (DAC_MEM_ADDRESS_WIDTH),
.B_DATA_WIDTH (DAC_DATA_WIDTH))
i_mem_asym (
.clka (axi_clk),
.wea (axi_dvalid_s),
.addra (axi_mem_waddr),
.dina (axi_rdata),
.clkb (dac_clk),
.addrb (dac_mem_raddr),
.doutb (dac_data));
// reset signals
assign axi_fifo_reset_s = (axi_resetn == 1'b0) || (axi_xfer_req == 1'b0);
assign dac_fifo_reset_s = (dac_rst == 1'b1) || (dac_xfer_req_m[2] == 1'b0);
// FSM to generate the all the AXI Read transactions
always @(posedge axi_clk) begin
if (axi_fifo_reset_s == 1'b1) begin
axi_read_state <= IDLE;
end else begin
case (axi_read_state)
IDLE : begin
if (axi_data_req == 1'b1) begin
axi_read_state <= XFER_STAGING;
end else begin
axi_read_state <= IDLE;
end
end
XFER_STAGING : begin
if (axi_araddr + AXI_ARINCR <= axi_last_raddr) begin
axi_read_state <= XFER_FULL_BURST;
end else begin
axi_read_state <= XFER_PARTIAL_BURST;
end
end
XFER_FULL_BURST : begin
if (axi_rready && axi_rvalid && axi_rlast) begin
if (axi_araddr_prev == axi_last_raddr) begin
axi_read_state <= XFER_END;
end else begin
axi_read_state <= IDLE;
end
end else begin
axi_read_state <= XFER_FULL_BURST;
end
end
XFER_PARTIAL_BURST : begin
if (axi_rready && axi_rvalid && axi_rlast) begin
axi_read_state <= XFER_END;
end else begin
axi_read_state <= XFER_PARTIAL_BURST;
end
end
XFER_END : begin
axi_read_state <= IDLE;
end
default : begin
axi_read_state <= IDLE;
end
endcase
end
end
// AXI read address channel
always @(posedge axi_clk) begin
if (axi_fifo_reset_s == 1'b1) begin
axi_arvalid <= 'd0;
axi_araddr <= AXI_ADDRESS;
axi_araddr_prev <= AXI_ADDRESS;
end else begin
if (axi_arvalid == 1'b1) begin
if (axi_arready == 1'b1) begin
axi_arvalid <= 1'b0;
end
end else begin
if (axi_read_state == XFER_STAGING) begin
axi_arvalid <= 1'b1;
end
end
// AXI read address generation
if ((axi_arvalid == 1'b1) && (axi_arready == 1'b1)) begin
axi_araddr <= (axi_read_state == XFER_FULL_BURST) ? (axi_araddr + AXI_ARINCR) :
(axi_read_state == XFER_PARTIAL_BURST) ? AXI_ADDRESS : axi_araddr;
axi_araddr_prev <= axi_araddr;
end
end
end
assign axi_arid = 4'b0000;
assign axi_arburst = 2'b01;
assign axi_arlock = 1'b0;
assign axi_arcache = 4'b0010;
assign axi_arprot = 3'b000;
assign axi_arqos = 4'b0000;
assign axi_arlen = (axi_read_state == XFER_FULL_BURST) ? AXI_LENGTH :
(axi_read_state == XFER_PARTIAL_BURST) ? axi_last_beats : AXI_LENGTH;
assign axi_arsize = AXI_SIZE;
// AXI read data channel
assign axi_dvalid_s = axi_rvalid & axi_rready & axi_xfer_req;
assign axi_dlast_s = (axi_araddr_prev == axi_last_raddr) ? axi_rlast : 0;
always @(posedge axi_clk) begin
if (axi_fifo_reset_s == 1'b1) begin
axi_rready <= 1'b0;
axi_rerror <= 'd0;
end else begin
axi_rready <= axi_rvalid;
axi_rerror <= axi_rvalid & axi_rresp[1];
end
end
// ASYNC MEM write control
always @(posedge axi_clk) begin
if (axi_fifo_reset_s == 1'b1) begin
axi_mem_waddr <= 'd0;
axi_mem_waddr_g <= 'd0;
axi_mem_laddr <= {AXI_MEM_ADDRESS_WIDTH{1'b1}};
axi_mem_laddr_toggle <= 0;
end else begin
if (axi_dvalid_s == 1'b1) begin
axi_mem_waddr <= axi_mem_waddr + 1'b1;
if (axi_dlast_s == 1'b1) begin
axi_mem_laddr <= axi_mem_waddr;
axi_mem_laddr_toggle <= ~axi_mem_laddr_toggle;
end
end
axi_mem_waddr_g <= axi_mem_waddr_b2g_s;
end
end
ad_b2g # (
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_axi_mem_waddr_b2g (
.din (axi_mem_waddr_s),
.dout (axi_mem_waddr_b2g_s));
assign axi_mem_raddr_s = (MEM_RATIO == 1) ? axi_mem_raddr :
(MEM_RATIO == 2) ? axi_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):1] :
(MEM_RATIO == 4) ? axi_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):2] :
axi_mem_raddr[(DAC_MEM_ADDRESS_WIDTH-1):3];
assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr :
(MEM_RATIO == 2) ? {axi_mem_waddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_waddr, 2'b0} :
{axi_mem_waddr, 3'b0};
assign axi_mem_laddr_s = (MEM_RATIO == 1) ? axi_mem_laddr :
(MEM_RATIO == 2) ? {axi_mem_laddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_laddr, 2'b0} :
{axi_mem_laddr, 3'b0};
assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr} - axi_mem_raddr_s;
always @(posedge axi_clk) begin
if (axi_fifo_reset_s == 1'b1) begin
axi_mem_addr_diff <= 'd0;
axi_mem_raddr <= 'd0;
axi_mem_raddr_m1 <= 'd0;
axi_mem_raddr_m2 <= 'd0;
axi_data_req <= 'd0;
end else begin
axi_mem_raddr_m1 <= dac_mem_raddr_g;
axi_mem_raddr_m2 <= axi_mem_raddr_m1;
axi_mem_raddr <= axi_mem_raddr_m2_g2b_s;
axi_mem_addr_diff <= axi_mem_addr_diff_s[AXI_MEM_ADDRESS_WIDTH-1:0];
// requesting AXI read access from the memory, if there is enough space
// for a full burst in the async buffer
if (axi_mem_addr_diff >= AXI_BUF_THRESHOLD_HI) begin
axi_data_req <= 1'b0;
end else begin
axi_data_req <= 1'b1;
end
end
end
ad_g2b #(
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_axi_mem_raddr_m2_g2b (
.din (axi_mem_raddr_m2),
.dout (axi_mem_raddr_m2_g2b_s));
// CDC for xfer_req signal
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_xfer_req_m <= 3'b0;
end else begin
dac_xfer_req_m <= {dac_xfer_req_m[1:0], axi_xfer_req};
end
end
assign dac_xfer_out = dac_xfer_req_m[2] & dac_mem_valid;
// CDC for write addresses from the DDRx clock domain
always @(posedge dac_clk) begin
if (dac_fifo_reset_s == 1'b1) begin
dac_mem_waddr <= 'b0;
dac_mem_waddr_m1 <= 'b0;
dac_mem_waddr_m2 <= 'b0;
dac_mem_laddr_toggle_m <= 4'b0;
dac_mem_laddr <= 'b0;
end else begin
dac_mem_waddr_m1 <= axi_mem_waddr_g;
dac_mem_waddr_m2 <= dac_mem_waddr_m1;
dac_mem_waddr <= dac_mem_waddr_m2_g2b_s;
dac_mem_laddr_toggle_m <= {dac_mem_laddr_toggle_m[2:0], axi_mem_laddr_toggle};
dac_mem_laddr <= (dac_mem_laddr_toggle_m[2] ^ dac_mem_laddr_toggle_m[1]) ?
axi_mem_laddr_s :
dac_mem_laddr;
end
end
assign dac_laddr_wea = dac_mem_laddr_toggle_m[3] ^ dac_mem_laddr_toggle_m[2];
assign dac_laddr_rea = ((dac_mem_raddr == dac_mem_laddr_b) &&
(dac_xfer_out == 1'b1)) ? 1'b1 :1'b0;
axi_dacfifo_address_buffer #(
.ADDRESS_WIDTH (4),
.DATA_WIDTH (DAC_MEM_ADDRESS_WIDTH))
i_laddress_buffer (
.clk (dac_clk),
.rst (dac_fifo_reset_s),
.wea (dac_laddr_wea),
.din (dac_mem_laddr),
.rea (dac_laddr_rea),
.dout (dac_mem_laddr_s));
ad_g2b #(
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_dac_mem_waddr_m2_g2b (
.din (dac_mem_waddr_m2),
.dout (dac_mem_waddr_m2_g2b_s));
assign dac_mem_addr_diff_s = {1'b1, dac_mem_waddr} - dac_mem_raddr;
// ASYNC MEM read control
always @(posedge dac_clk) begin
if (dac_fifo_reset_s == 1'b1) begin
dac_mem_enable <= 1'b0;
dac_mem_valid <= 1'b0;
end else begin
if (dac_mem_dunf_s == 1'b1) begin
dac_mem_enable <= 1'b0;
end else if (dac_mem_addr_diff_s[(DAC_MEM_ADDRESS_WIDTH-1):0] >= DAC_BUF_THRESHOLD_HI) begin
dac_mem_enable <= 1'b1;
end
dac_mem_valid <= (dac_mem_enable) ? dac_valid : 1'b0;
end
end
// CDC for the dma_last_beats
always @(posedge dac_clk) begin
if (dac_fifo_reset_s == 1'b1) begin
dac_last_beats <= 4'b0;
dac_last_beats_m <= 4'b0;
end else begin
dac_last_beats_m <= dma_last_beats;
dac_last_beats <= dac_last_beats_m;
end
end
// If the MEM_RATIO is grater than one, it can happen that not all the DAC beats from
// an AXI beat are valid. In this case the invalid data is dropped.
// The axi_dlast indicates the last AXI beat. The valid number of DAC beats on the last AXI beat
// commes from the AXI write module. (axi_dacfifo_wr.v)
always @(posedge dac_clk) begin
if (dac_fifo_reset_s == 1'b1) begin
dac_mem_raddr <= 'd0;
dac_mem_laddr_b <= 'd0;
dac_mem_raddr_g <= 'd0;
end else begin
dac_mem_laddr_b <= dac_mem_laddr_s;
if (dac_mem_valid == 1'b1) begin
if ((dac_last_beats > 0) &&
(dac_mem_raddr == (dac_mem_laddr_b + dac_last_beats - 1))) begin
dac_mem_raddr <= dac_mem_raddr + (MEM_RATIO - (dac_last_beats - 1));
end else begin
dac_mem_raddr <= dac_mem_raddr + 1;
end
end
dac_mem_raddr_g <= dac_mem_raddr_b2g_s;
end
end
ad_b2g # (
.DATA_WIDTH(DAC_MEM_ADDRESS_WIDTH)
) i_dac_mem_raddr_b2g (
.din (dac_mem_raddr),
.dout (dac_mem_raddr_b2g_s));
// underflow generation, there is no overflow
assign dac_mem_dunf_s = (dac_mem_addr_diff_s[(DAC_MEM_ADDRESS_WIDTH-1):0] == 0) ? 1'b1 : 1'b0;
always @(posedge dac_clk) begin
if(dac_fifo_reset_s == 1'b1) begin
dac_dunf <= 1'b0;
end else begin
dac_dunf <= dac_mem_dunf_s;
end
end
endmodule
// ***************************************************************************
// ***************************************************************************