pluto_hdl_adi/library/axi_adrv9001/intel/adrv9001_tx.v

141 lines
4.5 KiB
Coq
Raw Normal View History

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2020 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module adrv9001_tx #(
parameter CMOS_LVDS_N = 0,
parameter NUM_LANES = 4,
parameter FPGA_TECHNOLOGY = 0,
parameter USE_BUFG = 0,
parameter USE_RX_CLK_FOR_TX = 0
) (
input ref_clk,
input up_clk,
input mssi_sync,
input tx_output_enable,
// physical interface (transmit)
output tx_dclk_out_n_NC,
output tx_dclk_out_p_dclk_out,
input tx_dclk_in_n_NC,
input tx_dclk_in_p_dclk_in,
output tx_idata_out_n_idata0,
output tx_idata_out_p_idata1,
output tx_qdata_out_n_qdata2,
output tx_qdata_out_p_qdata3,
output tx_strobe_out_n_NC,
output tx_strobe_out_p_strobe_out,
input rx_clk_div,
input rx_clk,
input rx_ssi_rst,
// internal resets and clocks
output [31:0] dac_clk_ratio,
input dac_rst,
output dac_clk_div,
input [7:0] dac_data_0,
input [7:0] dac_data_1,
input [7:0] dac_data_2,
input [7:0] dac_data_3,
input [7:0] dac_data_strb,
input [7:0] dac_data_clk,
input dac_data_valid
);
wire [6*8-1:0] serdes_in;
wire [5:0] gpio_out;
periphery_clk_buf tx_clk_buf(
.inclk (tx_dclk_in_p_dclk_in),
.outclk (tx_clk)
);
assign serdes_in = {dac_data_clk,
dac_data_strb,
dac_data_3,
dac_data_2,
dac_data_1,
dac_data_0};
assign {tx_dclk_out_p_dclk_out,
tx_strobe_out_p_strobe_out,
tx_qdata_out_p_qdata3,
tx_qdata_out_n_qdata2,
tx_idata_out_p_idata1,
tx_idata_out_n_idata0} = gpio_out;
genvar i;
generate
for (i = 0; i <= 5; i = i + 1) begin: g_ddr_o
reg [7:0] shift_reg = 8'b0;
wire [1:0] gpio_in;
// DDR output
adrv9001_gpio_out gpio_tx_out (
.ck(tx_clk),
.din(gpio_in),
.pad_out(gpio_out[i])
);
always @(posedge tx_clk) begin
if (dac_data_valid) begin
shift_reg <= serdes_in[i*8+:8];
end else begin
shift_reg <= {shift_reg[5:0],2'b0};
end
end
// Order of transmission:
// gpio_in[0] - first
// gpio_in[1] - last
assign gpio_in = {shift_reg[6],shift_reg[7]};
end
endgenerate
// No clock divider, qualifier used instead
assign dac_clk_div = tx_clk;
assign dac_clk = tx_clk;
assign dac_clk_ratio = 1;
endmodule