For consistent simulation behavior it is recommended to annotate all source
files with a timescale. Add it to those where it is currently missing.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Drive the descriptor from the source side to destination
so we can abort consecutive transfers in case TLAST asserts.
For AXIS count the length of the burst and pass that value to the
destination instead the programmed one. This is useful when the
streams aborts early by asserting the TLAST. We want to notify the
destination with the right number of beats received.
For FIFO source interface reuse the same logic due the small footprint
even if the stream does not got interrupted in that case.
For MM source interface wire the burst length from the request side to
destination.
The transfer abort logic in the src_axi_stream module is making some
assumptions about the internal timings of the data mover module.
Move this logic inside the data mover module. This will make it easier to
update the internal logic without having to update other modules.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The only two users of the data mover module both implement the same
sync-transfer-start logic. Move this into the data mover module to avoid
the duplicated code.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
With the recent rework there is now a fair amount of dead code in the
datamover module that is no longer used. Remove it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Data is gated on the source side interface and not let into the pipeline if
there is no space available inside the store and forward memory.
This means whenever data is let into the pipeline space is available and
backpressure wont be asserted. Remove the backpressure signals altogether
to simplify the design.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the DMAC uses a simple FIFO as the store-and-forward buffer. The
FIFO handshaking is beat based whereas the remainder of the DMAC is burst
based. This means that additional control signals have to be combined with
the FIFO handshaking signal to generate the external handshaking signals.
Re-work the store-and-forward buffer to utilize a BRAM that is subdivided
into N segments. Where N is the maximum number of bursts that can be stored
in the buffer and each segment has the size of the maximum burst length.
Each segment stores the data associated with one burst and even when the
burst is shorter than the maximum burst length the next burst will be
stored in the next segment.
The new store-and-forward buffer takes care of generating all the
handshaking signals. This means handshaking is generated in a central place
and does not have to be combined from multiple data-paths simplifying the
overall logic.
The new store-and-forward buffer also takes care of data width up- and
down-sizing in case that the source and sink modules have a different data
width. This tighter integration will allow future enhancements like using
asymmetric memory.
This re-work lays the foundation of future enhancements to the DMA like
support for un-aligned transfers and early transfer abort which would have
been much more difficult to implement with the previous architecture.
In addition it significantly reduces the resource utilization of the
store-and-forward buffer and allows for better timing due to reduced
combinatorial path lengths.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
For the AXI streaming interfaces we need to make sure that the handshaking
rules for the external interface are met. Hence we can't just disable the
DMA and have to wait for any pending beats to complete.
For the FIFO interfaces on the other hand no such requirements exist. All
handshaking is for the internal pipeline which will be reset as a whole so
it is OK to violate the handshaking without causing any undefined behavior.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The DMAC allows a transfer to be aborted. When a transfer is aborted the
DMAC shuts down as fast as possible while still completing any pending
transactions as required by the protocol specifications of the port. E.g.
for AXI-MM this means to complete all outstanding bursts.
Once the DMAC has entered an idle state a special synchronization signal is
send to all modules. This synchronization signal instructs them to flush
the pipeline and remove any stale data and metadata associated with the
aborted transfer. Once all data has been flushed the DMAC enters the
shutdown state and is ready for the next transfer.
In addition each module has a reset that resets the modules state and is
used at system startup to bring them into a consistent state.
Re-work the shutdown process to instead of flushing the pipeline re-use the
startup reset signal also for shutdown.
To manage the reset signal generation introduce the reset manager module.
It contains a state machine that will assert the reset signals in the
correct order and for the appropriate duration in case of a transfer
shutdown.
The reset signal is asserted in all domains until it has been asserted for
at least 4 clock cycles in the slowest domain. This ensures that the reset
signal is not de-asserted in the faster domains before the slower domains
have had a chance to process the reset signal.
In addition the reset signal is de-asserted in the opposite direction of
the data flow. This ensures that the data sink is ready to receive data
before the data source can start sending data. This simplifies the internal
handshaking.
This approach has multiple advantages.
* Issuing a reset and removing all state takes less time than
explicitly flushing one sample per clock cycle at a time.
* It simplifies the logic in the faster clock domains at the expense of
more complicated logic in the slower control clock domain. This allows
for higher fMax on the data paths.
* Less signals to synchronize from the control domain to the data domains
The implementation of the pause mode has also slightly changed. Pause is
now a simple disable of the data domains. When the transfer is resumed
after a pause the data domains are re-enabled and continue at their
previous state.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Refactor the fifo_inf modules to always correctly generate the underflow and
overflow status signals. Before it was possible that in some cases they
were not generated when they should have been.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Clear the pipeline when no transfers are active to make sure that we do not
get residual data on the first sample for the next transfer.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There were a few place in the core where it assumed a 64-bit wide bus. Make this
configurable using parameters. The patch also adds support for having different
DMA bus widths on the source and destination side.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>