The 2^18 dma address width with a 64 dma data width will result a FIFO, what will be implemented by 512 RAMB36 cells.
This is a the maximum BRAM FIFO depth in case of the VC707.
The 2^18 dma address width with a 64 dma data width will result a FIFO, what will be implemented by 512 RAMB36 cells.
This is a the maximum BRAM FIFO depth in case of the VC707.
The paths from the HDMI interface registers to the IO pads are
unconstrained. This means the P&R can in theory put the register anywhere
which could lead to stability issues on the interface, depending on what
else is in the fabric. To get predictable delays for the register to IO pad
path place the register into the IOB section.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The HP memory ports on ZYNQ are AXI3. The AXI-DMAC supports both native AXI3
and AXI4, by configuring it for AXI3 there is no need for a protocol
converter inside the interconnect, that connects the DMAC to the HP port.
In addition to that also set the data width for the DMAC on the HP port side
to 64 so there is no need for a memory width converter in the interconnect.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The toplevel input/output signal names are lower case, but the signals
connected to the system_wrapper are upper case. Since verilog is case
sensitive this leaves the toplevel input/output signals unconnected. Fix
this by using lower case names everywhere.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The toplevel input/output signal names are lower case, but the signals
connected to the system_wrapper are upper case. Since verilog is case
sensitive this leaves the toplevel input/output signals unconnected. Fix
this by using lower case names everywhere.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The toplevel input/output signal names are lower case, but the signals
connected to the system_wrapper are upper case. Since verilog is case
sensitive this leaves the toplevel input/output signals unconnected. Fix
this by using lower case names everywhere.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The constraints processing order changed to "late" instead of "early", in order for all the clocks in the system to be already created when the IP constraints are applied
While the reset for the memory mapped AXI master is synchronous to some
clock it is not necessarily synchronous to the clock used for that
interface. So always generate a local reset signal to avoid problems that
could result from this.
While we are at it also update the code to only generate a local reset if
the interface is asynchronous to the register map, otherwise use the
register map reset.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Ignore the timing path from the current DMA address to the register map,
this is just a debug signal at the moment.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>