Commit Graph

44 Commits (2d13b5b8cd95faa33e15da952e329adea9120414)

Author SHA1 Message Date
Laszlo Nagy e08ca2fc20 jesd204: Add out of context constraint file for link layer cores
For the out of context flow it is important to have all clocks defined
at the interface, especially if the clock are used in the other constraints.
2021-05-14 15:39:40 +03:00
stefan.raus 4a772265a9 Update Quartus Prime version from 19.3.0 to 20.1.0
adi_project_intel.tcl: Change quartus version to 20.1.0.
library: Set qsys version so that IP instances won't require a specific version.
2021-03-08 11:29:33 +02:00
Laszlo Nagy 0db7519c18 jesd204_tx:64b: Remove reset
Remove synchronous reset from datapath to reduce fanout on reset and
help timing closure.
2021-03-08 10:46:52 +02:00
Laszlo Nagy bfd4c77284 jesd204/jesd204_tx: Expose character replacement capability 2021-02-26 14:41:49 +02:00
Laszlo Nagy dd58759cd8 jesd204: Intel: NP12 support
Dual clock mode is introduced in link layer to support different
datapath widths on the transport layer than on physical layer.

- Link clock : lane rate / 40 for input datapath width of 4 octets 8b10b
- Device clock : Link clock * input data path width / output datapath width

Supports four clock configurations, single or dual clock mode with or
without external device clock.

The configuration interface reflects the dual clock domain.
2021-02-05 15:24:15 +02:00
Laszlo Nagy 71475e7dd8 jesd204: Expose core synthesis parameters through registers
Make synthesis parameters accessible for the drivers.
Rework implementation to reflect the parameters of the actual core and
not of the AXI interfacing core.
2021-02-05 15:24:15 +02:00
Laszlo Nagy 454b900f90 jesd204: Xilinx: NP=12 support
To support deterministic latency with non-power of two octets per frame
(F=3,6) the interface width towards the transport layer must be resized
to match integer multiple of frames.

e.g  Input datapath width = 4; Output datpath width = 6;
  for F=3 one beat contains 2 frames
  for F=6 one beat contains 1 frame

The width change is realized with a gearbox.

Due the interface width change the single clock domain core is split
in two clock domains.
  - Link clock : lane rate / 40 for input datapath width of 4 octets 8b10b
  -              lane rate / 20 for input datapath width of 8 octets 8b10b
  -              lane rate / 66 for input datapath width of 8 octets 64b66b

  - Device clock : Link clock * input data path width / output datapath width

Interface to transport layer and SYSREF handling is moved to device clock domain.

The configuration interface reflects the dual clock domain.

If Input and Output datapath width matches, the gearbox is no longer
required, a single clock can be connected to both clocks.
2021-02-05 15:24:15 +02:00
Laszlo Nagy 6ef803e7ab jesd204: Make character replacement opt in feature
In order to keep resource utilization low and for better timing closure
allow disabling of the character replacement logic.

If the parameter is set the frame alignment monitoring is limited to links
where scrambling is on.
2021-02-05 15:24:15 +02:00
Matt Blanton 7093e10ebf jesd204: Fixed TX frame mark timing. Added start and end of multiframe signals as RX and TX ports 2021-02-05 15:24:15 +02:00
Matt Blanton 400c3927f7 jesd204: Add support for 8-byte JESD204B, frame alignment character insertion/replacement
Add support to JESD204 RX and TX core for 8-byte 8b/10b link mode,
and frame alignment character replace/insert with or without scrambling.
Add support for xcelium simulator to jesd204/tb
Increased cores minor version.
2021-02-05 15:24:15 +02:00
Laszlo Nagy e759c1855b jesd204: Clean-up combinatorial logic
To correctly model combinatorial logic in always blocks
blocking assignments must be used.
2020-09-29 17:27:42 +03:00
Maxim 341221dc91
jesd204: Update jesd204_tx_lane.v
Removed decoder for tx_ready.
2020-04-01 10:29:40 +03:00
Laszlo Nagy d9a31e8d83 jesd204_tx: Support for 64b mode in transmit peripheral
Instantiate 64B/66B mode encoder based on synthesis parameter.
2020-02-10 09:47:07 +02:00
Laszlo Nagy f2060e27be jesd204_tx: add output pipeline stage
In order to help timing closure on multi SLR FPGAs add a pipeline stage
between the link layer and physical layer. This will add a fixed amount
of delay to the overall latency.
2020-02-07 09:02:46 +02:00
Laszlo Nagy db573a59b0 jesd204: support for 16 lanes 2019-11-28 16:17:21 +02:00
Istvan Csomortani 5329458a62 library/scripts: Rename adi_ip_alt.tcl to adi_ip_intel.tcl 2019-06-29 06:53:51 +03:00
Istvan Csomortani 363494ab9c library/scripts: Rename adi_ip.tcl to adi_ip_xilinx.tcl 2019-06-29 06:53:51 +03:00
Istvan Csomortani 79b6ba29ce all: Rename altera to intel 2019-06-29 06:53:51 +03:00
Adrian Costina c32b4b02f3 sync_bits: Change I/O names of wires "in" and "out" for VHDL users 2019-04-23 18:03:23 +03:00
Lars-Peter Clausen d72fac4b1e Add missing timescale annotations
For consistent simulation behavior it is recommended to annotate all source
files with a timescale. Add it to those where it is currently missing.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-10-17 10:32:47 +03:00
Laszlo Nagy 0caea39bad jesd204_rx/tx: make SYSREF IOB placement optional
In case when the SYSREF is connected to an FPGA IO which has a limitation
on the IOB register IN_FF clock line and the required ref clock is high
we can't use the IOB registers.
e.g. the max clock rate on zcu102 HP IO FF is 312MHz but ref clock is 375MHz;

If IOB is used in this case a pulse width violation is reported.

This change makes the IOB placement selectable in such case or
for targets which don't require class 1 operation.
2018-07-24 09:16:24 +03:00
Istvan Csomortani d18eb85e41 jesd204:tx_ctrl: Update the sync_request logic
The cfg_links_disable register will mask the SYNC lines, disabled links
will always have a de-asserted SYNC (logic state HIGH).
The FSM will stay in CGS as long as there is one active link with an
asserted SYNC (logic state LOW).

Update the test bench to generate the SYNC signals in different clock
edges, so it can test all the possible scenarios.
2018-05-03 19:37:35 +03:00
Istvan Csomortani c12ce216e9 jesd204:tx_ctrl: status_sync register contains the raw SYNC status 2018-05-03 19:37:35 +03:00
Istvan Csomortani b632debc35 jesd204:tx_ctrl: Fix sync_bits instance 2018-05-03 19:37:35 +03:00
Istvan Csomortani da03572b32 jesd204_tx: Add dynamic multi-link support
A multi-link is a link where multiple converter devices are connected to a
single logic device (FPGA). All links involved in a multi-link are synchronous
and established at the same time. For a TX link this means that the FPGA receives
multiple SYNC signals, one for each link. The state machine of the TX link
peripheral must combine those SYNC signals into a single SYNC signal that is
asserted when either of the external SYNC signals is asserted.

Dynamic multi-link support must allow to select to which converter devices on
the multi-link the SYNC signal is propagated too. This is useful when depending
on the use case profile some converter devices are supposed to be disabled.

Add the cfg_links_disable[0x081] register for multi-link control and
propagate its value to the TX FSM.
2018-05-03 19:37:35 +03:00
Istvan Csomortani 09ff1f3a77 jesd204: Fix file names
All the file names must have the same name as its module. Change all the
files, which did not respect this rule.
Update all the make files and Tcl scripts.
2018-04-11 15:09:54 +03:00
Lars-Peter Clausen 2b914d33c1 Move Altera IP core dependency tracking to library Makefiles
Currently the individual IP core dependencies are tracked inside the
library Makefile for Xilinx IPs and the project Makefiles only reference
the IP cores.

For Altera on the other hand the individual dependencies are tracked inside
the project Makefile. This leads to a lot of duplicated lists and also
means that the project Makefiles need to be regenerated when one of the IP
cores changes their files.

Change the Altera projects to a similar scheme than the Xilinx projects.
The projects themselves only reference the library as a whole as their
dependency while the library Makefile references the individual source
dependencies.

Since on Altera there is no target that has to be generated create a dummy
target called ".timestamp_altera" who's only purpose is to have a timestamp
that is greater or equal to the timestamp of all of the IP core files. This
means the project Makefile can have a dependency on this file and make sure
that the project will be rebuild if any of the files in the library
changes.

This patch contains quite a bit of churn, but hopefully it reduces the
amount of churn in the future when modifying Altera IP cores.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-04-11 15:09:54 +03:00
Lars-Peter Clausen 35a39ba2e6 Regenerate library Makefiles using the new shared Makefile include
This reduces the amount of boilerplate code that is present in these
Makefiles by a lot.

It also makes it possible to update the Makefile rules in future without
having to re-generate all the Makefiles.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-04-11 15:09:54 +03:00
Istvan Csomortani a740b6012f Make: Use $(MAKE) for recursive make commands
This commit should resolve the issue #64.

Recursive make commands should always use the variable MAKE, not the explicit
command name ‘make’.
2018-03-07 07:40:19 +00:00
Lars-Peter Clausen 2d896c0729 jesd204: Add Altera/Intel IP support
Add Qsys IP scripts as well as SDC constraint files for the ADI JESD204
peripherals. This allows them to be instantiated and used on Altera/Intel
platforms.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-21 11:09:42 +02:00
Lars-Peter Clausen d345a1e31a jesd204: jesd204_tx: Add dummy valid for the TX data interface
The Xilinx tools are quite forgiving when it comes to required signals on
standard interfaces, which is why it was possible to define a AXI streaming
interface without the required valid signal.

The Altera tools are more strict and wont allow this. Add a dummy valid
signal to the TX data interface to make the tools happy. For now the signal
does not do anything, in the future it might be used to detect an underflow
condition on the data interface and report this through the status
interface.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-21 11:08:27 +02:00
Rejeesh Kutty 1c386d4d34 hdlmake.pl- updates 2017-08-07 16:09:20 -04:00
Lars-Peter Clausen 2b84fbb3b3 jesd204: Use consistent naming scheme for CDC blocks
Name all CDC blocks following the patter i_cdc_${signal_name}. This makes
it clear what is going on.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-07 17:44:23 +02:00
Lars-Peter Clausen 918f226f3b jesd204_tx: Use the CDC sync_bits helper to synchronize the SYNC~ signal
Use the CDC sync_bits helper to synchronize the asynchronous external SYNC~
signal into the link clock domain, rather than open-coding this operation.

This makes it more explicit what is going on.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-07 17:44:23 +02:00
Lars-Peter Clausen 5d66f1d7bb jesd204_tx: Remove duplicated file
The ilas_cfg_static.v is part of the jesd204_tx_static_config module.
Somehow a copy of that file made it into the jesd204_tx module where it is
completely unused. Remove the duplicated file.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-07 17:42:17 +02:00
Istvan Csomortani 115c8f2ba6 license: Update old license headers 2017-07-28 12:47:14 +01:00
Lars-Peter Clausen c1d6ee8f1b Partially revert "hdlmake.pl - updates"
This partially reverts commit a8ade15173.

Remove the nonsensical Makefile dependencies that got added by accident.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-21 15:06:22 +02:00
Rejeesh Kutty a8ade15173 hdlmake.pl - updates 2017-07-20 15:11:21 -04:00
Lars-Peter Clausen 369fe69d34 jesd204: tx_ctrl: Fix status_sync assignment
The SYNC signal that gets reported through the status interface should be
the output (second stage) of the synchronizer circuit.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-17 17:13:02 +02:00
Lars-Peter Clausen fa46688be5 jesd204: Add names for generate for-blocks
Be more standard compliant and assign names to generate for-blocks. This is
required for Altera/Intel support.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-17 17:13:02 +02:00
Lars-Peter Clausen 9e50f5afa8 jesd204: Handle sysref events in the register map
There are currently two sysref related events. One the sysref captured
event which is generated when an external sysref edge has been observed.
The other is the sysref alignment error event which is generated when a
sysref edge is observed that has a different alignment from previously
observed sysref edges.

Capture those events in the register map. This is useful for error
diagnostic. The events are sticky and write-1-to-clear.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Lars-Peter Clausen baa256e34c jesd204: Slightly rework sysref handling
For SYSREF handling there are now three possible modes.

1) Disabled. In this mode the LMFC is generated internally and all external
SYSREF edges are ignored. This mode should be used for subclass 0 when no
external sysref is available.
2) Continuous SYSREF. An external SYSREF signal is required and the LMFC is
aligned to the SYSREF signal. The SYSREF signal is continuously monitored
and if a edge unaligned to the previous edges is detected the LMFC is
re-aligned to the new edge.
3) Oneshot SYSREF. Oneshot SYSREF mode is similar to continuous SYSREF mode
except only the first edge is captured and all further edges are ignored,
re-alignment will not happen.

Both in continuous and oneshot signal at least one external sysref edge is
required before an LMFC is generated. All events that require an LMFC will
be delayed until a SYSREF edge has been captured. This is done to avoid
accidental re-alignment.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Rejeesh Kutty dc94dd3ea7 jesd204- apply constraints after top 2017-06-16 15:30:18 -04:00
Lars-Peter Clausen 1202286c3d Add ADI JESD204 link layer cores
The ADI JESD204 link layer cores are a implementation of the JESD204 link
layer. They are responsible for handling the control signals (like SYNC and
SYSREF) and controlling the link state machine as well as performing
per-lane (de-)scrambling and character replacement.

Architecturally the cores are separated into two components.

1) Protocol processing cores (jesd204_rx, jesd204_tx). These cores take
care of the JESD204 protocol handling. They have configuration and status
ports that allows to configure their behaviour and monitor the current
state. The processing cores run entirely in the lane_rate/40 clock domain.

They have a upstream and a downstream port that accept and generate raw PHY
level data and transport level payload data (which is which depends on the
direction of the core).

2) Configuration interface cores (axi_jesd204_rx, axi_jesd204_tx). The
configuration interface cores provide a register map interface that allow
access to the to the configuration and status interfaces of the processing
cores. The configuration cores are responsible for implementing the clock
domain crossing between the lane_rate/40 and register map clock domain.

These new cores are compatible to all ADI converter products using the
JESD204 interface.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-05-23 11:16:07 +02:00