Currently the TX lane mapping is implemented by having to connect tx_phy_s_* to
the tx_ip_s_* and the tx_phy_d_* to the tx_ip_d_* signals in the system
qsys file in the desired order.
Re-work things so that instead the lane mapping is provided through the
TX_LANE_MAP parameter. The parameter specifies in which order logical lanes
are mapped onto the physical lanes.
The appropriate connections are than made inside the core according to this
parameter rather than having to manually connect the signals externally.
In order to generate a 1-to-1 mapping the TX_LANE_MAP parameter can be left
empty.
This change slightly reduces the boiler-plate code that is necessary to
setup the transceiver.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The PLL frequency must be half of the lane rate and the core clock rate
must be lane rate divided by 40. There is no other option, otherwise things
wont work.
Instead of having to manually specify PLL and core clock frequency derive
them in the transceiver script. This reduces the risk of accidental
misconfiguration.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Qsys allows to query to query the clock domain that is associated with a
clock input of a peripheral. This allows to automatically detect whether
the different clocks of the DMAC are asynchronous and CDC logic needs to be
inserted or not.
Auto-detection has the advantages that the configuration parameters don't
need to be set manually and the optional configuration will be choose
automatically. There is also less chance of error of leaving the settings
in a wrong configuration when e.g. the clock domains change.
In case the auto-detection should ever fail configuration options that
provide a manual overwrite are added as well.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Convert the ADRV9371 project to the ADI JESD204 link layer cores. The
change is very straight forward, but a matching change on the software side
is required.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Move the CDC helper modules to a dedicated helper modules. This makes it
possible to reference them without having to use file paths that go outside
of the referencing project's directory.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Because the S_AXI interface of the axi_adxcvr core was infered
using the process adi_ip_properties, the interface address range
has changed from 4k to 64k. As a result, all the addresses of
the axi_adxcvr cores were changed and realigned.
- disable reconfiguration for RX transceivers and enabled the reconfiguration for TX transceiver. They cannot be enabled at the same time at this point
- update FIFO SIZE to 16 for all DMAs
- updated memory connections to 256 bit and moved clock connection to 133 MHz, for all DMAs.