If dac_valid is not a constant '1' it gets synchronized with the
dac_data_sync signal. This causes that dac_valid never asserts while
dac_data_sync is high, this way skipping the phase initialization.
For projects where the clock ratio between the sampling clock and core clock
is higher than 2, the ad_dds generates a number of samples equal with
the clock ratio. There is a phase offset between the samples, proportional
with the requested DDS frequency.
In scenarios where the DDS out frequency is closer to the upper
limit(Nyquist) and/or the clock ratio is also greater than 2 and the
dac_data_sync reminds low for an extended period of time, the DAC will
receive at each core clock period, a number of samples equal with the
clock ratio and with an amplitude influenced by the DDS out frequency.
In most cases similar with a sawtooth signal.
With this commit we ensures that samples received by the DAC are 0 for
the period where dac_data_sync signal is high. Only when the signal
transitions to low, the phase accumulator is initialized and the phase
information is passed to the phase to amplitude converter.
Another issue can appear when the sync signal is too short; less then
CLK_RATIO * clock cycles. Because the phase accumulator will not
synchronize at all stages, the final result will be a random combination of
sine-waves. Added a minimum sync pulse after the dac_data_sync is set
low.
- remove reset logic
- add wait for dac valid logic
- rewrite sine concatenation on wires for different path width to
suppress warnings
- use computed atan LUT tables
The CORDIC has a selectable width range for phase and data of 8-24.
Regarding the width of phase and data, the wider they are the smaller
the precision loss when shifting but with the cost of more FPGA
utilization. The user must decide between precision and utilization.
The DDS_WD parameter is independent of CORDIC(CORDIC_DW) or
Polynomial(16bit), letting the user chose the output width.
Here we encounter two scenarios:
* DDS_DW < DDS data width - in this case, a fair rounding will be
implemented corresponding to the truncated bits
* DDS_DW > DDS data width - DDS out data left shift to get the
corresponding concatenation bits.
Add parameters:
- to select the sine generator (polynomial/CORDIC)
- to select the CORDIC data width(default 16)
Suppress the warnings generated when the DDS is disabled.
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Add .gitattributes file which sets up the eol encoding handling. This will
make sure that we get a uniform eol encoding across different operating
systems.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>