The DAC DMA will never overflow and unsurprisingly the dac_dovf signal is
never used anywhere. It is very unlikely it will ever be used, so remove
it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
+ Add a HDL parameter for the PPS receiver module :
PPS_RECEIVER_ENABLE. By default the module is disabled.
+ Add the CMOS_OR_LVDS_N and PPS_RECEIVER_ENABLE into the CONFIG
register
+ Define a pps_status read only register, which will be asserted, if the free
running counter reach a certain fixed threshold. (2^28) The register can
be deasserted by an incomming PPS only.
The ad_pps_receiver is instantiated at the top of core.
The rcounter is placed into adc/dac_common registers space, at the
address 0x30 (word aligned).
The interrupt mask is placed into adc/dac_common, at the address 0x04
(word aligned). Because the core has an instance of both modules, the
interrupt masks are OR-ed together.
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
In case of high precision devices with just a simple SPI interface
for control and data, the effective data rate can be significatly
lower than the SPI clock, and more importantly there isn't any relation
between the two clock domain.
The rate is defined by a SOT (start of transfer) generator, which
initiates a SPI transfer. Taking the fact that the generator runs
on system clock (100 MHz), and the device can require smaller rate (in kHz domain),
the 7 bit dac_datarate register is just too small.
Therefor increasing to 16 bit.
Not all peripherals use the GPIO register settings, but the registers still
take up a fair amount of space in the register map. Add options to allow to
disable them when not needed. This helps to reduce the utilization for
peripherals where these features are not needed.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Linuxe drivers are checking the drp_locked status even if the
core does not contains a clock generation/managment module. To
not break all the designs, revert all the status and control bits to
there old locations.
Add .gitattributes file which sets up the eol encoding handling. This will
make sure that we get a uniform eol encoding across different operating
systems.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>