Increase the width of wvalid_counter, should be equal with awlen width.
The wvalid_counter needs to count from zero to the required burst
length. The maximum burst length is 255, so the width of the counter
have to be 8 bits. axi_last_beats will get the last axi burst length.
The fifo will ask for a new data from the DDR, if the current
level is lower than the high threshold. This will prevent overflow.
By deleting the lower threshold, we can avoid ocassional underflows,
when the DAC rate is closer to the max DDRx rate.
Fix the dma_ready mux in top module, and the dma_ready_out reset
logic in axi_dacfifo_wr module. Also, both write and read addresses
of the async CDC fifo (inside the axi_dacfifo_wr) should be reset
before a dma transaction starts.
When using non-broadcast access to the GT DRP registers lane filtering is
done on both sides. The ready and data signals are filtered in the in the
axi_adxcvr module and the enable signal is filtered in the util_adxcvr
module. This works fine as long as both sides use the same transceiver IDs.
E.g. channel 0 of the axi_adxcvr module is connected to channel 0 of the
util_adxcvr module.
But this is not always the case. E.g. on the ADRV9371 platform there are
two RX axi_adxcvr modules (RX and RX_OS) connected to the same util_adxcvr.
The first axi_adxcvr uses lane 0 and 1 of the util_adxcvr, the second uses
lane 2 and 3.
Non-broadcast access for the first RX axi_adxcvr module works fine, but
always generates a timeout for the second axi_adxcvr module. This is
because lane 0/1 of the axi_adxcvr module is connected to lane 2/3 of the
util_adxcvr and when ID based filtering is done both can't match at the
same time.
To avoid this perform the filtering for all the signals in the axi_adxcvr
module. This makes sure that the same base ID is used.
This also removes the sel signal from the transceiver interfaces since it
is no longer used on the util_adxcvr side.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the scripts use 'analog.com' as the vendor property for IP cores,
but 'ADI' for interfaces.
Make things consistent by using 'analog.com' for both interfaces as well
as IP cores.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Currently the clock monitor features a hold register in the monitored clock
domain. This old register is used to store a instantaneous copy of the
counter register. The value in the old register is then transferred to the
monitoring domain. Since the counter is continuously counting it is not
possible to directly transfer it since that might result in inconsistent
data.
Instead stop the counter and hold the registers stable for a duration that
is long enough for the monitoring domain to correctly capture the value.
Once the value has been transferred the counter is reset and restarted for
the next iteration.
This allows to eliminate the hold register, which slightly reduces
utilization.
The externally visible behaviour is identical before and after the patch.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
All the hdl (verilog and vhdl) source files were updated. If a file did not
have any license, it was added into it. Files, which were generated by
a tool (like Matlab) or were took over from other source (like opencores.org),
were unchanged.
New license looks as follows:
Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
Each core or library found in this collection may have its own licensing terms.
The user should keep this in in mind while exploring these cores.
Redistribution and use in source and binary forms,
with or without modification of this file, are permitted under the terms of either
(at the option of the user):
1. The GNU General Public License version 2 as published by the
Free Software Foundation, which can be found in the top level directory, or at:
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
OR
2. An ADI specific BSD license as noted in the top level directory, or on-line at:
https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
Can not be multiple 'if' statements inside a generate block. If there are
multiple cases use if/esle statement, but always should be one single
if/else inside a generate.
Currently the IDDRs are configured in SAME_EDGE_PIPELINED mode, but then
the negative data is delayed by an additional clock cycle. This is the same
behaviour as using the IDDR in SAME_EDGE mode.
Switching to SAME_EDGE mode removes extra pipelining registers while
maintaining the same behaviour.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Xilinx recommends that all synchronizer flip-flops have
their ASYNC_REG property set to true in order to preserve the
synchronizer cells through any logic optimization during synthesis
and implementation.
- Change the clock and reset port name of the AXI slave interface
to s_axi_aclk and s_axi_aresetn. This way we can use the adi_ip_properties
process to infer the interface.
- Define an address space reference to the m_axi interface.
In modules ad_serdes_in/ad_serdes_out the handover of the parameter
SERDES_FACTOR did not exist, causing unwanted behavioral in case of
factors less than 8.
SERDES_FACTOR must be hand over to DATA_WIDTH parameter of the SERDES
primitive.