For consistent simulation behavior it is recommended to annotate all source
files with a timescale. Add it to those where it is currently missing.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In case when the SYSREF is connected to an FPGA IO which has a limitation
on the IOB register IN_FF clock line and the required ref clock is high
we can't use the IOB registers.
e.g. the max clock rate on zcu102 HP IO FF is 312MHz but ref clock is 375MHz;
If IOB is used in this case a pulse width violation is reported.
This change makes the IOB placement selectable in such case or
for targets which don't require class 1 operation.
Typically only one of the character error conditions is true at a time. And
even if multiple errors were present at the same time we'd only want to
count one error per character.
For each character track whether at least one of the monitored error
conditions is true. Then count the number of characters for which at least
one error condition occurred. And finally add that sum to the total numbers
of errors.
This results in a slightly better utilization.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
When the link is explicitly disabled through the control interface reset
the error statistics counter.
There is usually little benefit to preserving until after the link has been
disabled. If software is interested in the values it can read them before
disabling the link. Having them reset makes the behavior consistent with
all other internal state of the jesd204 RX peripheral, which is reset when
the link is disabled.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
* jesd204: Add RX error statistics
Added 32 bit error counter per lane, register 0x308 + lane*0x20
On the control part added register 0x244 for performing counter reset and counter mask
Bit 0 resets the counter when set to 1
Bit 8 masks the disparity errors, when set to 1
Bit 9 masks the not in table errors when set to 1
Bit 10 masks the unexpected k errors, when set to 1
Unexpected K errors are counted when a character other than k28 is detected. The counter doesn't add errors when in CGS phase
Incremented version number
A multi-link is a link where multiple converter devices are connected to a
single logic device (FPGA). All links involved in a multi-link are synchronous
and established at the same time. For a RX link this means that the SYNC signal
needs to be propagated from the FPGA to each converter.
Dynamic multi-link support must allow to select to which converter devices on
the multi-link the SYNC signal is propagated too. This is useful when depending
on the usecase profile some converter devices are supposed to be disabled.
Add the cfg_links_disable[0x081] register for multi-link control and
propagate its value to the RX FSM.
All the file names must have the same name as its module. Change all the
files, which did not respect this rule.
Update all the make files and Tcl scripts.
Currently the individual IP core dependencies are tracked inside the
library Makefile for Xilinx IPs and the project Makefiles only reference
the IP cores.
For Altera on the other hand the individual dependencies are tracked inside
the project Makefile. This leads to a lot of duplicated lists and also
means that the project Makefiles need to be regenerated when one of the IP
cores changes their files.
Change the Altera projects to a similar scheme than the Xilinx projects.
The projects themselves only reference the library as a whole as their
dependency while the library Makefile references the individual source
dependencies.
Since on Altera there is no target that has to be generated create a dummy
target called ".timestamp_altera" who's only purpose is to have a timestamp
that is greater or equal to the timestamp of all of the IP core files. This
means the project Makefile can have a dependency on this file and make sure
that the project will be rebuild if any of the files in the library
changes.
This patch contains quite a bit of churn, but hopefully it reduces the
amount of churn in the future when modifying Altera IP cores.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This reduces the amount of boilerplate code that is present in these
Makefiles by a lot.
It also makes it possible to update the Makefile rules in future without
having to re-generate all the Makefiles.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The DEGLITCH state of the RX state machine is a workaround for misbehaving
PHYs. It is an internal state and an implementation detail and it does not
really make sense to report through the status interface.
Rework things so that DEGLITCH state is reported as part of the CGS state
on the external status interface.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Add Qsys IP scripts as well as SDC constraint files for the ADI JESD204
peripherals. This allows them to be instantiated and used on Altera/Intel
platforms.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
This partially reverts commit a8ade15173.
Remove the nonsensical Makefile dependencies that got added by accident.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Be more standard compliant and assign names to generate for-blocks. This is
required for Altera/Intel support.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Use a single standalone counter that counts the number of beats since the
release of the SYNC~ signal, rather than re-using the LMFC counter plus a
dedicated multi-frame counter.
This is slightly simpler in terms of logic and also easier for software to
interpret the data.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
There are currently two sysref related events. One the sysref captured
event which is generated when an external sysref edge has been observed.
The other is the sysref alignment error event which is generated when a
sysref edge is observed that has a different alignment from previously
observed sysref edges.
Capture those events in the register map. This is useful for error
diagnostic. The events are sticky and write-1-to-clear.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
For SYSREF handling there are now three possible modes.
1) Disabled. In this mode the LMFC is generated internally and all external
SYSREF edges are ignored. This mode should be used for subclass 0 when no
external sysref is available.
2) Continuous SYSREF. An external SYSREF signal is required and the LMFC is
aligned to the SYSREF signal. The SYSREF signal is continuously monitored
and if a edge unaligned to the previous edges is detected the LMFC is
re-aligned to the new edge.
3) Oneshot SYSREF. Oneshot SYSREF mode is similar to continuous SYSREF mode
except only the first edge is captured and all further edges are ignored,
re-alignment will not happen.
Both in continuous and oneshot signal at least one external sysref edge is
required before an LMFC is generated. All events that require an LMFC will
be delayed until a SYSREF edge has been captured. This is done to avoid
accidental re-alignment.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The ADI JESD204 link layer cores are a implementation of the JESD204 link
layer. They are responsible for handling the control signals (like SYNC and
SYSREF) and controlling the link state machine as well as performing
per-lane (de-)scrambling and character replacement.
Architecturally the cores are separated into two components.
1) Protocol processing cores (jesd204_rx, jesd204_tx). These cores take
care of the JESD204 protocol handling. They have configuration and status
ports that allows to configure their behaviour and monitor the current
state. The processing cores run entirely in the lane_rate/40 clock domain.
They have a upstream and a downstream port that accept and generate raw PHY
level data and transport level payload data (which is which depends on the
direction of the core).
2) Configuration interface cores (axi_jesd204_rx, axi_jesd204_tx). The
configuration interface cores provide a register map interface that allow
access to the to the configuration and status interfaces of the processing
cores. The configuration cores are responsible for implementing the clock
domain crossing between the lane_rate/40 and register map clock domain.
These new cores are compatible to all ADI converter products using the
JESD204 interface.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>