The CORDIC has a selectable width range for phase and data of 8-24.
Regarding the width of phase and data, the wider they are the smaller
the precision loss when shifting but with the cost of more FPGA
utilization. The user must decide between precision and utilization.
The DDS_WD parameter is independent of CORDIC(CORDIC_DW) or
Polynomial(16bit), letting the user chose the output width.
Here we encounter two scenarios:
* DDS_DW < DDS data width - in this case, a fair rounding will be
implemented corresponding to the truncated bits
* DDS_DW > DDS data width - DDS out data left shift to get the
corresponding concatenation bits.
Update for the parametrized ad_mul module. This will scale
a selectable sine width in a multiplication module.
Rename the data and phase width parameters for legibility.
When the tool calculates the X value for different phase widths, we
get rounding errors for every width in the interval [8;24].
Depending on the width thess errors cause overflows or smaller amplitudes
of the sine waves.
The error is not linear nor proportional with the phase. To fix the issue
a simple aproximation was chosen.
Perform the shifting operation before addition/subtraction in a
rotation stage. In the previous method, the result of the arithmetic
operation was shifted and the outcome was presented to the next stage.
In this way, data connections will be reduced between pipeline stages
Add parameters:
- to select the sine generator (polynomial/CORDIC)
- to select the CORDIC data width(default 16)
Suppress the warnings generated when the DDS is disabled.
https://en.wikipedia.org/wiki/CORDIC
Configurable in/out data width (14,16,18,20);
The HDL implementation requires pipelines, resulting in a
data_width + 2 clock cycles delay between the phase input data and the
sine data. For this reason, a ddata (delay data) was propagated through
the pipeline stages to help in future use scenarios
Some FMC boards do utilize more than one transceiver quad but do not
necessarily use all transceivers in a quad. On such board is the
AD9694-500EBZ. Which uses two transceivers each in two adjacent quads.
This board can not be supported by instantiating a util_adxcvr with only 4
lanes. Since those 4 lanes would be packed into the same quad. Instead it
it is necessary to instantiate a util_adxcvr with 6 lanes. 4 lanes for the
first quad and 2 for the second.
To still to be able to connect such a util_adxcvr to a link layer with only
4 lanes allow to specify sparse lane mappings. A sparse mapping can have
less lanes than the util_adxcvr and some lanes will be left unconnected.
For example for the AD9694-500EBZ the lane mapping looks like the following:
ad_xcvrcon util_ad9694_xcvr axi_ad9694_xcvr ad9694_jesd {0 1 4 5} rx_device_clk
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Sometimes the output clock of the transceiver should not be used for the
device clock.
E.g. for deterministic latency with no uncertainty the device clock needs
to be sourced directly from a clock or transceiver reference clock input
pin.
Add an option to the ad_xcvrcon command to specify the device clock.
In case the same device clock is used for multiple JESD204 links, e.g. a TX
and a RX link only one reset generator is created.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Typically only one of the character error conditions is true at a time. And
even if multiple errors were present at the same time we'd only want to
count one error per character.
For each character track whether at least one of the monitored error
conditions is true. Then count the number of characters for which at least
one error condition occurred. And finally add that sum to the total numbers
of errors.
This results in a slightly better utilization.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
When the link is explicitly disabled through the control interface reset
the error statistics counter.
There is usually little benefit to preserving until after the link has been
disabled. If software is interested in the values it can read them before
disabling the link. Having them reset makes the behavior consistent with
all other internal state of the jesd204 RX peripheral, which is reset when
the link is disabled.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In MM2S applications like video DMA it is useful to mark the end of the stream
with the TLAST.
The change enables the generation of the TLAST on the last beat of the
last row of the 2d transfer.
The index on MSB of addresses was set to 31,
but the width of address in the axi_dmac depends on a parameter.
The mismatch causes issues in the Xilinx simulator which does not extends the
narrower width signal with zeros, instead the wider signal gets 'Z' on its MSBs.
When the address was incremented with the stride it became 'X' due the uninitialized
MSBs.
Vivado recognises .h files as C header files,
the expected extension for Verilog Header is .vh
This causes issues in simulating block designs since these files
won't be exported for the simulation even if they are
part of the simulation fileset.
When creating a block design targeted for simulation, in the testbench
it is useful to know the parameters of the sub components (e.g DMAC)
Xilinx's way to pass the parameters to the testbench in case of it's AXI
verification IP is through package files. We will do the same for the DMAC.
The package file can be generated from template files (ttcl).
These will be added only to the simulation file set of the project and
won't affect synthesis.
This change adds a diagnostic interface to the DMAC core.
The interface exposes internal information about the core,
information which can't be exposed through AXI registers
due the latency and update rate.
Such information is the fullness of the internal buffer.
For this is exposed in bursts and is driven from the destination
clock domain, as this is reflected in its name.
The signal has a fixed size and is dimensioned by
taking in account the supported maximum number of bursts of 128.
This change adds the TLAST signal to the AXI streaming interface
of the source side for Intel targets.
Xilinx based designs already have this since the tlast is part of the
interface definition.
In order to make the signal optional and let the tool connect a
default value to the it, the USE_TLAST_SRC/DEST parameter is
added to the configuration UI. This conditions the tlast port on
the interface of the DMAC.
Xilinx handles the optional signals much better so the parameter
is not required there.