The CORDIC has a selectable width range for phase and data of 8-24.
Regarding the width of phase and data, the wider they are the smaller
the precision loss when shifting but with the cost of more FPGA
utilization. The user must decide between precision and utilization.
The DDS_WD parameter is independent of CORDIC(CORDIC_DW) or
Polynomial(16bit), letting the user chose the output width.
Here we encounter two scenarios:
* DDS_DW < DDS data width - in this case, a fair rounding will be
implemented corresponding to the truncated bits
* DDS_DW > DDS data width - DDS out data left shift to get the
corresponding concatenation bits.
Update for the parametrized ad_mul module. This will scale
a selectable sine width in a multiplication module.
Rename the data and phase width parameters for legibility.
When the tool calculates the X value for different phase widths, we
get rounding errors for every width in the interval [8;24].
Depending on the width thess errors cause overflows or smaller amplitudes
of the sine waves.
The error is not linear nor proportional with the phase. To fix the issue
a simple aproximation was chosen.
Perform the shifting operation before addition/subtraction in a
rotation stage. In the previous method, the result of the arithmetic
operation was shifted and the outcome was presented to the next stage.
In this way, data connections will be reduced between pipeline stages
Add parameters:
- to select the sine generator (polynomial/CORDIC)
- to select the CORDIC data width(default 16)
Suppress the warnings generated when the DDS is disabled.
https://en.wikipedia.org/wiki/CORDIC
Configurable in/out data width (14,16,18,20);
The HDL implementation requires pipelines, resulting in a
data_width + 2 clock cycles delay between the phase input data and the
sine data. For this reason, a ddata (delay data) was propagated through
the pipeline stages to help in future use scenarios
Typically only one of the character error conditions is true at a time. And
even if multiple errors were present at the same time we'd only want to
count one error per character.
For each character track whether at least one of the monitored error
conditions is true. Then count the number of characters for which at least
one error condition occurred. And finally add that sum to the total numbers
of errors.
This results in a slightly better utilization.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
When the link is explicitly disabled through the control interface reset
the error statistics counter.
There is usually little benefit to preserving until after the link has been
disabled. If software is interested in the values it can read them before
disabling the link. Having them reset makes the behavior consistent with
all other internal state of the jesd204 RX peripheral, which is reset when
the link is disabled.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In MM2S applications like video DMA it is useful to mark the end of the stream
with the TLAST.
The change enables the generation of the TLAST on the last beat of the
last row of the 2d transfer.
The index on MSB of addresses was set to 31,
but the width of address in the axi_dmac depends on a parameter.
The mismatch causes issues in the Xilinx simulator which does not extends the
narrower width signal with zeros, instead the wider signal gets 'Z' on its MSBs.
When the address was incremented with the stride it became 'X' due the uninitialized
MSBs.
Vivado recognises .h files as C header files,
the expected extension for Verilog Header is .vh
This causes issues in simulating block designs since these files
won't be exported for the simulation even if they are
part of the simulation fileset.
When creating a block design targeted for simulation, in the testbench
it is useful to know the parameters of the sub components (e.g DMAC)
Xilinx's way to pass the parameters to the testbench in case of it's AXI
verification IP is through package files. We will do the same for the DMAC.
The package file can be generated from template files (ttcl).
These will be added only to the simulation file set of the project and
won't affect synthesis.
This change adds a diagnostic interface to the DMAC core.
The interface exposes internal information about the core,
information which can't be exposed through AXI registers
due the latency and update rate.
Such information is the fullness of the internal buffer.
For this is exposed in bursts and is driven from the destination
clock domain, as this is reflected in its name.
The signal has a fixed size and is dimensioned by
taking in account the supported maximum number of bursts of 128.
This change adds the TLAST signal to the AXI streaming interface
of the source side for Intel targets.
Xilinx based designs already have this since the tlast is part of the
interface definition.
In order to make the signal optional and let the tool connect a
default value to the it, the USE_TLAST_SRC/DEST parameter is
added to the configuration UI. This conditions the tlast port on
the interface of the DMAC.
Xilinx handles the optional signals much better so the parameter
is not required there.
In its current implementation the DMAC requires that the length of a
transfer is aligned to the widest interface. E.g. if the widest interface
is 128 bits wide the length of the transfer needs to be a multiple of 16
bytes.
If the requested length is not aligned to the interface width it will be
rounded up.
This works fine as long as both interfaces have the same width. If they
have different widths it is possible that the length is rounded up to
different values on the source and destination side. In that case the DMA
will deadlock because the transfer lengths don't match and either not enough
of too much data is delivered from the source to the destination side.
Currently it is up to software to make sure that such an invalid
configuration is not possible.
Also enforce this requirement in the DMAC itself by setting the LSBs of the
transfer length to a fixed 1 so that the length is always aligned to the
widest interface.
Software can also use this to discover the length alignment requirement, by
first writing a zero to the length register and then reading the register
back. The LSBs of the read back value will be non-zero indicating the
alignment requirement.
In a similar way the stride needs to be aligned to the width of its
respective interface, so the generated addresses stay aligned. Enforce this
in the same way by keeping the LSBs cleared.
Increment the minor version number to reflect these changes.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The transfer abort logic in the src_axi_stream module is making some
assumptions about the internal timings of the data mover module.
Move this logic inside the data mover module. This will make it easier to
update the internal logic without having to update other modules.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The only two users of the data mover module both implement the same
sync-transfer-start logic. Move this into the data mover module to avoid
the duplicated code.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
With the recent rework there is now a fair amount of dead code in the
datamover module that is no longer used. Remove it.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>