This partially reverts commit a8ade15173.
Remove the nonsensical Makefile dependencies that got added by accident.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Both the sys_hps.f2sdram_clock and the sys_dma_clk.clk signal are in the
same clock domain. They are both driven by the same clock. And even though
qsys is capable of detecting this it seems qsys interconnect is not able to
infer this and inserts a extra clock domain crossing bridge between the DMA
and the HPS AXI system memory interface.
To avoid this connect the sys_dma_clk.clk to the sys_hps.f2sdram_clock so
that all components are driven by the same qsys clock signal.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The MSB of the d_count signal is used as a overflow marker to stop the
counter from incrementing in the monitored clock domain. It is not exported
through the register map and truncated when assigned to the up_d_count
signal.
Make the truncation explicit to make it clear that this is not a mistake
and to avoid warnings about implicit truncation.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The generic Altera clock monitor constraints expect the instance to be
called i_clock_mon. Adjust the code accordingly.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In this particular case the behaviour is the same with non-blocking and
blocking assignments, but that could change if the code is modified in the
future. To avoid any potentially issue due to this consistently use
non-blocking assignments.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The axi_dmac can issue up to FIFO_SIZE read and write requests in parallel.
This is done in order to maximize throughput and compensate for for
latency.
Set the {read,write}IssuingCapability properties accordingly on the AXI
master interfaces. Otherwise qsys might decide to insert bridges that
artificially limit the number of requests, which in turn might affect
performance.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Use the sys_dma_clk clock module for clock and reset signals of the data
path, rather than using the A10GX specific sys_ddr3_cntrl signals. This
enables compatibility for all Altera/Intel platforms.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The SYNC signal that gets reported through the status interface should be
the output (second stage) of the synchronizer circuit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Make sure the core_cfg_transfer_en signal is declared before they are used.
Strictly speaking the current code is correct and synthesis correctly, but
declaring the signals make the intentions of the code more explicit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Be more standard compliant and assign names to generate for-blocks. This is
required for Altera/Intel support.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Make sure the req_gen_valid and req_gen_ready signals are declared before
they are used. Strictly speaking the current code is correct and synthesis
correctly, but declaring the signals make the intentions of the code more
explicit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
In some cases, the 'core_ilas_config_data' registers will be infered as
FDRE, instead of FDSE. Therefor a max delay definition, which are using
the S pin as its endpoint, it can become invalid, nonexistent.
Generalize the path, using the register itself as endpoint.
Increase the width of wvalid_counter, should be equal with awlen width.
The wvalid_counter needs to count from zero to the required burst
length. The maximum burst length is 255, so the width of the counter
have to be 8 bits. axi_last_beats will get the last axi burst length.
The fifo will ask for a new data from the DDR, if the current
level is lower than the high threshold. This will prevent overflow.
By deleting the lower threshold, we can avoid ocassional underflows,
when the DAC rate is closer to the max DDRx rate.
All verilog file are using the Verilog-2001 standard to define
and/or declare ports. Definin a port width with a local parameter
is a bad practive, when this standard is used. Some simulators
will crash. Try to avoid it.
Fix the dma_ready mux in top module, and the dma_ready_out reset
logic in axi_dacfifo_wr module. Also, both write and read addresses
of the async CDC fifo (inside the axi_dacfifo_wr) should be reset
before a dma transaction starts.