For Intel projects:
In cases where the clock of source synchronous interface is not routed
through a clock capable pin the DPA receive mode can't be used. Instead
the clock will be routed through a clock buffer from an IO to the clock
tree and from there to the IOPLL.
Fix library makefiles dep list using generic vendor info reg
Combine adi_int_bd_tcl with adi_auto_fill_bd_tcl procedure.
This change will simplify the process of generating makefiles for each library.
Removing the bd.tcl script from the adi_ip_files list will remove it from the
make dependency list.
Common basic steps:
- Include/create infrastructure:
* Intel:
- require quartus::device package
- set_module_property VALIDATION_CALLBACK info_param_validate
* Xilinx
- add bd.tcl, containing init{} procedure. The init procedure will be
called when the IP will be instantiated into the block design.
- add to the xilinx_blockdiagram file group the bd.tcl and common_bd.tcl
- create GUI files
- add parameters in *_ip.tcl and *_hw.tcl (adi_add_auto_fpga_spec_params)
- add/propagate the info parameters through the IP verilog files
axi_clkgen
util_adxcvr
ad_ip_jesd204_tpl_adc
ad_ip_jesd204_tpl_dac
axi_ad5766
axi_ad6676
axi_ad9122
axi_ad9144
axi_ad9152
axi_ad9162
axi_ad9250
axi_ad9265
axi_ad9680
axi_ad9361
axi_ad9371
axi_adrv9009
axi_ad9739a
axi_ad9434
axi_ad9467
axi_ad9684
axi_ad9963
axi_ad9625
axi_ad9671
axi_hdmi_tx
axi_fmcadc5_sync
By default inferred output reset signals have an active low polarity. The
axi_ad9361 rst output signal is active high though. Currently when
connecting it to a input reset with active high polarity will generate an
error in IPI.
Fix this by explicitly marking the polarity of the rst signal as active
high.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The DC filter implementation in library/common/dc_filter.v is Xilinx
specific as it uses the Xilinx DSP48 hard-macro. There is a matching Altera
specific implementation in library/altera/common/dc_filter.v.
Move the Xilinx specific implementation from the generic common folder to
the Xilinx specific common folder in library/xilinx/common/ since that is
where all other Xilinx specific common modules reside.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The ad_pps_receiver is instantiated at the top of core.
The rcounter is placed into adc/dac_common registers space, at the
address 0x30 (word aligned).
The interrupt mask is placed into adc/dac_common, at the address 0x04
(word aligned). Because the core has an instance of both modules, the
interrupt masks are OR-ed together.
+ Define two control signal for util_tdd_sync : tdd_sync_en and tdd_terminal_type
+ Delete to old ad_tdd_sync.v instances from the core
+ Update Make files
+ Update ad_tdd_control: add additional CDC logic for tdd_sync (the sync comes from another clock domain)
+ Update the ad_tdd_sync module: it's just a simple pulse generator, the pulse period is defined using a parameter, pulse width is fixed: 128 x clock cycle
+ Update TDD regmap: tdd sync period is no longer software defined
Add .gitattributes file which sets up the eol encoding handling. This will
make sure that we get a uniform eol encoding across different operating
systems.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
+ Delete unnecessary registers
+ Add the module ad_addsub.v to resolve additions and subtractions inside TDD control
+ Redefine the burst logic
+ Redesign the control signal generations
+ Note: This patch fix the TDD related timing violations