Commit Graph

32 Commits (a824bbfdbeea48d9d1f97f235e162087c1c799ae)

Author SHA1 Message Date
Iacob_Liviu 482f0489a3 scripts: Merge adi_env.tcl into a single file
Move the new adi_env.tcl file from hdl/projects/scripts into hdl/scrips
2022-08-08 13:52:54 +03:00
Iulia Moldovan 0c0617d49e libraries: Update modules according to guideline
* Added header license for the files that didn't have
* Modified parentheses
* Removed extra spaces at the end of lines
* Fixed parameters list to be each parameter on its line
* Deleted lines after endmodule and consecutive empty lines
* Fixed indentation

Signed-off-by: Iulia Moldovan <iulia.moldovan@analog.com>
2022-06-28 18:06:56 +03:00
Nick Pillitteri c1721e18dd account for ADI_VIVADO_IP_LIBRARY global variable when adding subcores 2022-03-24 16:29:49 +02:00
Adrian Costina 591a23156b Makefiles: Update header with the appropriate license 2021-09-16 16:50:53 +03:00
Laszlo Nagy 71475e7dd8 jesd204: Expose core synthesis parameters through registers
Make synthesis parameters accessible for the drivers.
Rework implementation to reflect the parameters of the actual core and
not of the AXI interfacing core.
2021-02-05 15:24:15 +02:00
Laszlo Nagy 454b900f90 jesd204: Xilinx: NP=12 support
To support deterministic latency with non-power of two octets per frame
(F=3,6) the interface width towards the transport layer must be resized
to match integer multiple of frames.

e.g  Input datapath width = 4; Output datpath width = 6;
  for F=3 one beat contains 2 frames
  for F=6 one beat contains 1 frame

The width change is realized with a gearbox.

Due the interface width change the single clock domain core is split
in two clock domains.
  - Link clock : lane rate / 40 for input datapath width of 4 octets 8b10b
  -              lane rate / 20 for input datapath width of 8 octets 8b10b
  -              lane rate / 66 for input datapath width of 8 octets 64b66b

  - Device clock : Link clock * input data path width / output datapath width

Interface to transport layer and SYSREF handling is moved to device clock domain.

The configuration interface reflects the dual clock domain.

If Input and Output datapath width matches, the gearbox is no longer
required, a single clock can be connected to both clocks.
2021-02-05 15:24:15 +02:00
Matt Blanton 400c3927f7 jesd204: Add support for 8-byte JESD204B, frame alignment character insertion/replacement
Add support to JESD204 RX and TX core for 8-byte 8b/10b link mode,
and frame alignment character replace/insert with or without scrambling.
Add support for xcelium simulator to jesd204/tb
Increased cores minor version.
2021-02-05 15:24:15 +02:00
Laszlo Nagy e759c1855b jesd204: Clean-up combinatorial logic
To correctly model combinatorial logic in always blocks
blocking assignments must be used.
2020-09-29 17:27:42 +03:00
Laszlo Nagy 5edc798b6b axi_jesd204_common/jesd204_up_common: Add event stats
Add statistics for :
 - number of link enable events
 - number of interrupt events (regardless of mask)

0x0B0 0x2C0 Stats Control Register
  [0] - Write 1 to clear stat registers

0x0B1 0x2C4 Link Enable Stat Register
  [15:0] Number of times the link was enabled from power-on or from last
         stat clear

0x0B4 0x2D0 IRQ Stat Register 0
  [31:16] IRQ 1 counter
  [15:0]  IRQ 0 counter

0x0B5 0x2D4 IRQ Stat Register 1
  [31:16] IRQ 3 counter
  [15:0]  IRQ 2 counter

0x0B6 0x2D8 IRQ Stat Register 2
  [31:16] IRQ 5 counter
  [15:0]  IRQ 4 counter

0x0B7 0x2DC IRQ Stat Register 3
  [31:16] IRQ 7 counter
  [15:0]  IRQ 6 counter
2020-09-29 17:27:42 +03:00
Laszlo Nagy c574861bf4 axi_jesd204_tx: Add 64b mode for control interface 2020-02-10 09:47:07 +02:00
Istvan Csomortani 363494ab9c library/scripts: Rename adi_ip.tcl to adi_ip_xilinx.tcl 2019-06-29 06:53:51 +03:00
Adrian Costina 8340d4c89d axi_jesd204_common: Fix dependancies so that the IP can be generated Out Of Context 2019-03-21 15:36:57 +02:00
Laszlo Nagy c6c825c90a jesd204/tb: support for ModelSim and Xsim
Adding support for ModelSim and Vivado Xsim.

Usage:
  export SIMULATOR=modelsim
    or
  export SIMULATOR=xsim
2019-01-21 10:33:30 +02:00
Lars-Peter Clausen d72fac4b1e Add missing timescale annotations
For consistent simulation behavior it is recommended to annotate all source
files with a timescale. Add it to those where it is currently missing.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-10-17 10:32:47 +03:00
Istvan Csomortani 0b20dbc2c9 jesd204:up_common: Move cfg_links_disable to 0x086 address space 2018-05-03 19:37:35 +03:00
Istvan Csomortani da03572b32 jesd204_tx: Add dynamic multi-link support
A multi-link is a link where multiple converter devices are connected to a
single logic device (FPGA). All links involved in a multi-link are synchronous
and established at the same time. For a TX link this means that the FPGA receives
multiple SYNC signals, one for each link. The state machine of the TX link
peripheral must combine those SYNC signals into a single SYNC signal that is
asserted when either of the external SYNC signals is asserted.

Dynamic multi-link support must allow to select to which converter devices on
the multi-link the SYNC signal is propagated too. This is useful when depending
on the use case profile some converter devices are supposed to be disabled.

Add the cfg_links_disable[0x081] register for multi-link control and
propagate its value to the TX FSM.
2018-05-03 19:37:35 +03:00
Istvan Csomortani 974131cfc5 jesd204:up_common: Add a synthesis register for NUM_LINKS 2018-05-03 18:48:54 +03:00
Istvan Csomortani e71f9e384e jesd204:up_common: Move cfg_links_disable to 0x086 address space 2018-05-03 18:48:54 +03:00
Istvan Csomortani 0e099b6f08 jesd204_rx: Add dynamic multi-link support
A multi-link is a link where multiple converter devices are connected to a
single logic device (FPGA). All links involved in a multi-link are synchronous
and established at the same time. For a RX link this means that the SYNC signal
needs to be propagated from the FPGA to each converter.

Dynamic multi-link support must allow to select to which converter devices on
the multi-link the SYNC signal is propagated too. This is useful when depending
on the usecase profile some converter devices are supposed to be disabled.

Add the cfg_links_disable[0x081] register for multi-link control and
propagate its value to the RX FSM.
2018-05-03 18:48:54 +03:00
Lars-Peter Clausen 2b914d33c1 Move Altera IP core dependency tracking to library Makefiles
Currently the individual IP core dependencies are tracked inside the
library Makefile for Xilinx IPs and the project Makefiles only reference
the IP cores.

For Altera on the other hand the individual dependencies are tracked inside
the project Makefile. This leads to a lot of duplicated lists and also
means that the project Makefiles need to be regenerated when one of the IP
cores changes their files.

Change the Altera projects to a similar scheme than the Xilinx projects.
The projects themselves only reference the library as a whole as their
dependency while the library Makefile references the individual source
dependencies.

Since on Altera there is no target that has to be generated create a dummy
target called ".timestamp_altera" who's only purpose is to have a timestamp
that is greater or equal to the timestamp of all of the IP core files. This
means the project Makefile can have a dependency on this file and make sure
that the project will be rebuild if any of the files in the library
changes.

This patch contains quite a bit of churn, but hopefully it reduces the
amount of churn in the future when modifying Altera IP cores.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-04-11 15:09:54 +03:00
Lars-Peter Clausen 35a39ba2e6 Regenerate library Makefiles using the new shared Makefile include
This reduces the amount of boilerplate code that is present in these
Makefiles by a lot.

It also makes it possible to update the Makefile rules in future without
having to re-generate all the Makefiles.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2018-04-11 15:09:54 +03:00
Lars-Peter Clausen 4acb91bedb jesd204: axi_jesd204_{rx,tx}: Add external link domain reset
Currently the reset for the link clock domain is generated internally in
the axi_jesd204_{rx,tx} peripheral. The reset is controlled by through the
register map.

Add an additional external reset for link clock domain. The link clock
domain is kept in reset if either the internal reset or the external reset
is asserted.

This for example allows the fabric to keep the domain in reset if the clock
is not yet stable.

The status of the external reset can be queried from the register map.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-18 18:25:12 +02:00
Lars-Peter Clausen 2b84fbb3b3 jesd204: Use consistent naming scheme for CDC blocks
Name all CDC blocks following the patter i_cdc_${signal_name}. This makes
it clear what is going on.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-08-07 17:44:23 +02:00
Lars-Peter Clausen 634340c170 jesd204: jesd204_up_common: Rename clock monitor instance to i_clock_mon
The generic Altera clock monitor constraints expect the instance to be
called i_clock_mon. Adjust the code accordingly.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-20 19:45:26 +02:00
Lars-Peter Clausen 1f2e189ff2 jesd204: jesd204_up_sysref: Remove unused signals
These signals are leftovers of an earlier implementation version, remove
them.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-17 17:13:02 +02:00
Lars-Peter Clausen a9fe0fa530 jesd204: jesd204_up_common: Add missing core_cfg_transfer_en declaration
Make sure the core_cfg_transfer_en signal is declared before they are used.
Strictly speaking the current code is correct and synthesis correctly, but
declaring the signals make the intentions of the code more explicit.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-07-17 17:13:02 +02:00
Lars-Peter Clausen 9e50f5afa8 jesd204: Handle sysref events in the register map
There are currently two sysref related events. One the sysref captured
event which is generated when an external sysref edge has been observed.
The other is the sysref alignment error event which is generated when a
sysref edge is observed that has a different alignment from previously
observed sysref edges.

Capture those events in the register map. This is useful for error
diagnostic. The events are sticky and write-1-to-clear.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Lars-Peter Clausen d3b44906c3 jesd204: Properly align LMFC offset in register map
The internal LMFC offset signals are in beats, whereas the register map is
in octets. Add the proper alignment padding to the register map to
translate between the two.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Lars-Peter Clausen baa256e34c jesd204: Slightly rework sysref handling
For SYSREF handling there are now three possible modes.

1) Disabled. In this mode the LMFC is generated internally and all external
SYSREF edges are ignored. This mode should be used for subclass 0 when no
external sysref is available.
2) Continuous SYSREF. An external SYSREF signal is required and the LMFC is
aligned to the SYSREF signal. The SYSREF signal is continuously monitored
and if a edge unaligned to the previous edges is detected the LMFC is
re-aligned to the new edge.
3) Oneshot SYSREF. Oneshot SYSREF mode is similar to continuous SYSREF mode
except only the first edge is captured and all further edges are ignored,
re-alignment will not happen.

Both in continuous and oneshot signal at least one external sysref edge is
required before an LMFC is generated. All events that require an LMFC will
be delayed until a SYSREF edge has been captured. This is done to avoid
accidental re-alignment.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Lars-Peter Clausen bf88527119 library: jesd204: jesd204_up_common: Fix indention
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-06-20 17:39:41 +02:00
Rejeesh Kutty 6a437472f2 jesd204-sub-ip- no top files 2017-06-01 15:48:48 -04:00
Lars-Peter Clausen 1202286c3d Add ADI JESD204 link layer cores
The ADI JESD204 link layer cores are a implementation of the JESD204 link
layer. They are responsible for handling the control signals (like SYNC and
SYSREF) and controlling the link state machine as well as performing
per-lane (de-)scrambling and character replacement.

Architecturally the cores are separated into two components.

1) Protocol processing cores (jesd204_rx, jesd204_tx). These cores take
care of the JESD204 protocol handling. They have configuration and status
ports that allows to configure their behaviour and monitor the current
state. The processing cores run entirely in the lane_rate/40 clock domain.

They have a upstream and a downstream port that accept and generate raw PHY
level data and transport level payload data (which is which depends on the
direction of the core).

2) Configuration interface cores (axi_jesd204_rx, axi_jesd204_tx). The
configuration interface cores provide a register map interface that allow
access to the to the configuration and status interfaces of the processing
cores. The configuration cores are responsible for implementing the clock
domain crossing between the lane_rate/40 and register map clock domain.

These new cores are compatible to all ADI converter products using the
JESD204 interface.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-05-23 11:16:07 +02:00