Commit Graph

6 Commits (d6ff3a35ab72878d42e623de8f2da4820a0830d4)

Author SHA1 Message Date
Iulia Moldovan 0c0617d49e libraries: Update modules according to guideline
* Added header license for the files that didn't have
* Modified parentheses
* Removed extra spaces at the end of lines
* Fixed parameters list to be each parameter on its line
* Deleted lines after endmodule and consecutive empty lines
* Fixed indentation

Signed-off-by: Iulia Moldovan <iulia.moldovan@analog.com>
2022-06-28 18:06:56 +03:00
Matt Blanton 1e04b2e2f2 jesd204_rx: Add RX frame alignment character check
Add support for RX frame alignment character checking when scrambling is enabled and
for link reset on misalignment.
Add support for xcelium simulator to jesd204/tb
2020-07-31 11:43:41 +03:00
Istvan Csomortani 157afcbc33 tb_base: Fix various test benches
The tb_base.v verilog files does not contain a full module definition,
just some plain test code. In general the files is sourced inside the
test bench main module. As is, defining a timescale in these files will
generate an error, because timescale directive can not be inside a
module.

Delete all the timescale directive from these files.
2019-05-17 11:20:48 +03:00
Adrian Costina 168e1951ee library: Add `timescale to modules that are missing it 2019-05-15 15:37:44 +03:00
Laszlo Nagy c6c825c90a jesd204/tb: support for ModelSim and Xsim
Adding support for ModelSim and Vivado Xsim.

Usage:
  export SIMULATOR=modelsim
    or
  export SIMULATOR=xsim
2019-01-21 10:33:30 +02:00
Lars-Peter Clausen 1202286c3d Add ADI JESD204 link layer cores
The ADI JESD204 link layer cores are a implementation of the JESD204 link
layer. They are responsible for handling the control signals (like SYNC and
SYSREF) and controlling the link state machine as well as performing
per-lane (de-)scrambling and character replacement.

Architecturally the cores are separated into two components.

1) Protocol processing cores (jesd204_rx, jesd204_tx). These cores take
care of the JESD204 protocol handling. They have configuration and status
ports that allows to configure their behaviour and monitor the current
state. The processing cores run entirely in the lane_rate/40 clock domain.

They have a upstream and a downstream port that accept and generate raw PHY
level data and transport level payload data (which is which depends on the
direction of the core).

2) Configuration interface cores (axi_jesd204_rx, axi_jesd204_tx). The
configuration interface cores provide a register map interface that allow
access to the to the configuration and status interfaces of the processing
cores. The configuration cores are responsible for implementing the clock
domain crossing between the lane_rate/40 and register map clock domain.

These new cores are compatible to all ADI converter products using the
JESD204 interface.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
2017-05-23 11:16:07 +02:00