The coraz7s has an Arduino/chipKIT Shield connector with 6 Single-ended
and 8 Differential Analog inputs tied to Xilinx's XADC.
The CN0540 uses the A0-5 pins as single-ended ADC channels to monitor
the differential input, ADC driver, and buffer voltages.
Signed-off-by: Sergiu Cuciurean <sergiu.cuciurean@analog.com>
Note, the current SCLK to spi_clk ratio is four. That means, the input
delay in the MISO line is 25% of the SCLK period.
If the SCLK to spi_clk ratio is changing, this constraint must be
updated.
Generate a higher frequency of spi_clk using an axi_clkgen. (MMCM)
CAUTION: ad7768-1 is still violating the standard SPI timing,
reducing the timing window significantly for the last bit (or last high
bit).
Ignore the following critical warning on DMAC instance:
Critical Warning (15003): "mixed_port_feed_through_mode" parameter of RAM atom
system_bd:i_system_bd|axi_dmac:axi_dmac_0|axi_dmac_transfer:i_transfer| \
dmac_request_arb:i_request_arb|dmac_dest_mm_axi:i_dest_dma_mm| \
altsyncram:bl_mem_rtl_0|altsyncram_0tp1:auto_generated|ram_block1a1
cannot have value "old" when different read and write clocks are used.
Due to the interface differences between HPS's AXI4 and DMA's AXI4, the
tool will try to automaticaly add some bridges between the two
interface. Unfortunatly it does generate timing issues at the f2sdram0
interface of the HPS instance. By explicitly instantiating an AXI
bridge, these timing issues disappears.
The reconfiguration interface for the Stratix10 XCVR has a different
address width. Prepare the register map layout of the project to support
this new architecture.
If we have a lot of peripherals connected to the CPU's memory interface,
the generated interconnect can grow to much decreasing the timing
margin.
One solution is to group the peripherals by its interface types and
functions and use bridges to connect them to the memory interface.
This commit adds the possibility to insert an Avalon Memory Mapped
bridge when we create the connection between the peripheral and CPU.
Should be used just with Avalaon Memory Mapped interfaces.
The ADRV9002 uses in the digital interface 1.8V, however the Zed VADJ is
selectable by a jumper can go up to 3.3V . Voltage levels higher than 1.8V
are detected by the EVAL-ADRV9002 board, asserting the VADJ_ERR pin.
If VADJ error is set high keep all drivers in high-z state and signalize
it to the software layer through a gpio line.