Add CMOS support for the interface for the following symbol modes on Xilinx devices:
A B C D E F G H
CSSI__1-lane 1 16/8 80(SDR)/160(DDR) 80 - SDR/DDR SDR/DDR->4/2(C=16), 2/1(C=8)
Columns description:
A - SSI Modes
B - Data Lanes Per Channel
C - Serialization factor Per data lane
D - Max data lane rate(MHz)
E - Max Clock rate (MHz)
F - Max Sample Rate for I/Q (MHz)
G - Data Type
H - DDS Rate
CSSI - CMOS Source Synchronous Interface
The 2020.1 Xilinx tools have a different tcl procedures to build the boot.bin
file.
This commit updates the adi_make tcl flow for the new tools. The new
process is not backwards compatible with tools older than 2020 version.
This commit changes the transfer length register to work in increments of
64 bytes and without offset. The true transfer length can now be
determined by multiplying the value of the transfer_length register with
64.
A value of zero is interpreted as a request for all available storage.
Additionally, this commit fixes an off by one issue that was discovered
during testing of the RX path.
Signed-off-by: David Winter <david.winter@analog.com>
In order to workaround optimization issues hit in Vivado 2020.2,
set ADI_USE_OOC_SYTHESIS variable by default to 1. This will build
projects in Out Of Context mode.
Projects can be build in Project Mode by exporting ADI_USE_OOC_SYTHESIS=n.
Update vivado version to 2020.2:
- update default vivado version from 2020.1 to 2020.2
- add conditions to apply specific contraints only in Out Of Context mode.
- update DDR controler parameters for vcu118 and kcu105 dev boards
The width of the parameter `device_cfg_octets_per_multiframe` doesn't match the width in the submodules and corresponding slave module jesd204_tx, resulting in a warning generated during validation in Vivado. This patch increases the width of this parameter in axi_jesd204_tx.
This commit removes two invalid ad_connect invocations, which weren't
caught in the original tests for commit cdda184007.
Signed-off-by: David Winter <david.winter@analog.com>
Fix offset for pwms with different periods.
The previous version was using an offset scheme based on pwm counter_0.
By using a separate offset counter the user will not be constrained by
pwm_0 period in regards with the offset of other pulses. In this version
offset 0 is used to delay pwm 0 in regards to the offset counter.
The offset counter will start after the load_config signal is asserted
and all active pwm counters finish the previous cycle or by a software
reset.
The software reset should also be used when using external_sync.