// *************************************************************************** // *************************************************************************** // Copyright 2016(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_dacfifo_dac ( axi_clk, axi_dvalid, axi_ddata, axi_dready, axi_dlast, axi_xfer_req, dma_last_beats, dac_clk, dac_rst, dac_valid, dac_data, dac_xfer_out, dac_dunf ); // parameters parameter AXI_DATA_WIDTH = 512; parameter AXI_LENGTH = 15; parameter DAC_DATA_WIDTH = 64; localparam MEM_RATIO = AXI_DATA_WIDTH/DAC_DATA_WIDTH; localparam DAC_ADDRESS_WIDTH = 10; localparam AXI_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH : (MEM_RATIO == 2) ? (DAC_ADDRESS_WIDTH - 1) : (MEM_RATIO == 4) ? (DAC_ADDRESS_WIDTH - 2) : (DAC_ADDRESS_WIDTH - 3); // BUF_THRESHOLD_LO will make sure that there are always at least two burst in the memmory localparam AXI_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1); localparam AXI_BUF_THRESHOLD_HI = {(AXI_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1); localparam DAC_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1) * MEM_RATIO; localparam DAC_BUF_THRESHOLD_HI = {(DAC_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1) * MEM_RATIO; localparam DAC_ARINCR = (AXI_LENGTH+1) * MEM_RATIO; // dma write input axi_clk; input axi_dvalid; input [(AXI_DATA_WIDTH-1):0] axi_ddata; output axi_dready; input axi_dlast; input axi_xfer_req; input [ 3:0] dma_last_beats; // dac read input dac_clk; input dac_rst; input dac_valid; output [(DAC_DATA_WIDTH-1):0] dac_data; output dac_xfer_out; output dac_dunf; // internal registers reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'd0; reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_laddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_g = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_g = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m1 = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2 = 'd0; reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'd0; reg axi_dready = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m1 = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m2 = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_addr_diff = 'd0; reg dac_mem_init = 1'b0; reg dac_mem_init_d = 1'b0; reg dac_mem_enable = 1'b0; reg [ 2:0] dac_xfer_req_m = 3'b0; reg dac_xfer_init = 1'b0; reg [ 3:0] dac_last_beats = 4'b0; reg [ 3:0] dac_last_beats_m = 4'b0; reg dac_dunf = 1'b0; reg [ 3:0] dac_beat_cnt = 4'b0; reg dac_dlast = 1'b0; reg dac_dlast_m1 = 1'b0; reg dac_dlast_m2 = 1'b0; reg dac_dlast_inmem = 1'b0; reg dac_mem_valid = 1'b0; // internal signals wire [AXI_ADDRESS_WIDTH:0] axi_mem_addr_diff_s; wire [(AXI_ADDRESS_WIDTH-1):0] axi_mem_raddr_s; wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_s; wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_s; wire [DAC_ADDRESS_WIDTH:0] dac_mem_addr_diff_s; wire dac_xfer_init_s; wire dac_last_axi_beats_s; // binary to grey conversion function [9:0] b2g; input [9:0] b; reg [9:0] g; begin g[9] = b[9]; g[8] = b[9] ^ b[8]; g[7] = b[8] ^ b[7]; g[6] = b[7] ^ b[6]; g[5] = b[6] ^ b[5]; g[4] = b[5] ^ b[4]; g[3] = b[4] ^ b[3]; g[2] = b[3] ^ b[2]; g[1] = b[2] ^ b[1]; g[0] = b[1] ^ b[0]; b2g = g; end endfunction // grey to binary conversion function [9:0] g2b; input [9:0] g; reg [9:0] b; begin b[9] = g[9]; b[8] = b[9] ^ g[8]; b[7] = b[8] ^ g[7]; b[6] = b[7] ^ g[6]; b[5] = b[6] ^ g[5]; b[4] = b[5] ^ g[4]; b[3] = b[4] ^ g[3]; b[2] = b[3] ^ g[2]; b[1] = b[2] ^ g[1]; b[0] = b[1] ^ g[0]; g2b = b; end endfunction // write interface always @(posedge axi_clk) begin if (axi_xfer_req == 1'b0) begin axi_mem_waddr <= 'd0; axi_mem_waddr_g <= 'd0; axi_mem_laddr <= {AXI_ADDRESS_WIDTH{1'b1}}; end else begin if (axi_dvalid == 1'b1) begin axi_mem_waddr <= axi_mem_waddr + 1'b1; axi_mem_laddr <= (axi_dlast == 1'b1) ? axi_mem_waddr : axi_mem_laddr; end axi_mem_waddr_g <= b2g(axi_mem_waddr_s); axi_mem_laddr_g <= b2g(axi_mem_laddr_s); end end // scale the axi_mem_* addresses assign axi_mem_raddr_s = (MEM_RATIO == 1) ? axi_mem_raddr : (MEM_RATIO == 2) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):1] : (MEM_RATIO == 4) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):2] : axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):3]; assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr : (MEM_RATIO == 2) ? {axi_mem_waddr, 1'b0} : (MEM_RATIO == 4) ? {axi_mem_waddr, 2'b0} : {axi_mem_waddr, 3'b0}; assign axi_mem_laddr_s = (MEM_RATIO == 1) ? axi_mem_laddr : (MEM_RATIO == 2) ? {axi_mem_laddr, 1'b0} : (MEM_RATIO == 4) ? {axi_mem_laddr, 2'b0} : {axi_mem_laddr, 3'b0}; // incomming data flow control assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr} - axi_mem_raddr_s; always @(posedge axi_clk) begin if (axi_xfer_req == 1'b0) begin axi_mem_addr_diff <= 'd0; axi_mem_raddr <= 'd0; axi_mem_raddr_m1 <= 'd0; axi_mem_raddr_m2 <= 'd0; axi_dready <= 'd0; end else begin axi_mem_raddr_m1 <= dac_mem_raddr_g; axi_mem_raddr_m2 <= axi_mem_raddr_m1; axi_mem_raddr <= g2b(axi_mem_raddr_m2); axi_mem_addr_diff <= axi_mem_addr_diff_s[AXI_ADDRESS_WIDTH-1:0]; if (axi_mem_addr_diff >= AXI_BUF_THRESHOLD_HI) begin axi_dready <= 1'b0; end else if (axi_mem_addr_diff <= AXI_BUF_THRESHOLD_LO) begin axi_dready <= 1'b1; end end end // CDC for xfer_req signal always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_xfer_req_m <= 3'b0; end else begin dac_xfer_req_m <= {dac_xfer_req_m[1:0], axi_xfer_req}; end end assign dac_xfer_out = dac_xfer_req_m[2]; assign dac_xfer_init_s = ~dac_xfer_req_m[2] & dac_xfer_req_m[1]; // read interface always @(posedge dac_clk) begin if (dac_xfer_out == 1'b0) begin dac_mem_init <= 1'b0; dac_mem_init_d <= 1'b0; dac_mem_enable <= 1'b0; end else begin if (dac_xfer_init == 1'b1) begin dac_mem_init <= 1'b1; end if ((dac_mem_init == 1'b1) && (dac_mem_addr_diff > DAC_BUF_THRESHOLD_LO)) begin dac_mem_init <= 1'b0; end dac_mem_init_d <= dac_mem_init; // memory is ready when the initial fill up is done dac_mem_enable <= (dac_mem_init_d & ~dac_mem_init) ? 1'b1 : dac_mem_enable; end dac_xfer_init <= dac_xfer_init_s; end always @(posedge dac_clk) begin if (dac_xfer_out == 1'b0) begin dac_mem_waddr <= 'b0; dac_mem_waddr_m1 <= 'b0; dac_mem_waddr_m2 <= 'b0; dac_mem_laddr <= 'b0; dac_mem_laddr_m1 <= 'b0; dac_mem_laddr_m2 <= 'b0; dac_dlast <= 1'b0; dac_dlast_m1 <= 1'b0; dac_dlast_m2 <= 1'b0; end else begin dac_mem_waddr_m1 <= axi_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; dac_mem_waddr <= g2b(dac_mem_waddr_m2); dac_mem_laddr_m1 <= axi_mem_laddr_g; dac_mem_laddr_m2 <= dac_mem_laddr_m1; dac_mem_laddr <= g2b(dac_mem_laddr_m2); dac_dlast_m1 <= axi_dlast; dac_dlast_m2 <= dac_dlast_m1; dac_dlast <= dac_dlast_m2; end end assign dac_mem_addr_diff_s = {1'b1, dac_mem_waddr} - dac_mem_raddr; always @(posedge dac_clk) begin dac_mem_valid <= (dac_mem_enable) ? dac_valid : 1'b0; end // CDC for the dma_last_beats always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_last_beats <= 32'b0; dac_last_beats_m <= 32'b0; end else begin dac_last_beats_m <= dma_last_beats; dac_last_beats <= dac_last_beats_m; end end // If the MEM_RATIO is grater than one, it can happen that not all the DAC beats from // an AXI beat are valid. In this case the invalid data is dropped. // The axi_dlast indicates the last AXI beat. The valid number of DAC beats on the last AXI beat // commes from the AXI write module. (axi_dacfifo_wr.v) assign dac_last_axi_beats_s = ((dac_dlast_inmem == 1'b1) && (dac_mem_raddr >= dac_mem_laddr) && (dac_mem_raddr < dac_mem_laddr + MEM_RATIO)) ? 1'b1 : 1'b0; always @(posedge dac_clk) begin if (dac_xfer_out == 1'b0) begin dac_mem_raddr <= 'd0; dac_beat_cnt <= 'd0; dac_dlast_inmem <= 1'b0; end else begin if (dac_dlast == 1'b1) begin dac_dlast_inmem <= 1'b1; end else if (dac_mem_raddr == dac_mem_laddr + MEM_RATIO) begin dac_dlast_inmem <= 1'b0; end if (dac_mem_valid == 1'b1) begin dac_beat_cnt <= ((dac_beat_cnt >= MEM_RATIO-1) || ((dac_last_beats > 1'b1) && (dac_last_axi_beats_s > 1'b0) && (dac_beat_cnt == dac_last_beats-1))) ? 0 : dac_beat_cnt + 1; dac_mem_raddr <= ((dac_last_axi_beats_s) && (dac_beat_cnt == dac_last_beats-1)) ? (dac_mem_laddr + MEM_RATIO) : dac_mem_raddr + 1'b1; end dac_mem_raddr_g <= b2g(dac_mem_raddr); end end // underflow generation, there is no overflow always @(posedge dac_clk) begin if(dac_xfer_out == 1'b0) begin dac_mem_addr_diff <= 'b0; dac_dunf <= 1'b0; end else begin dac_mem_addr_diff <= dac_mem_addr_diff_s[DAC_ADDRESS_WIDTH-1:0]; dac_dunf <= (dac_mem_addr_diff == 1'b0) ? 1'b1 : 1'b0; end end // instantiations ad_mem_asym #( .A_ADDRESS_WIDTH (AXI_ADDRESS_WIDTH), .A_DATA_WIDTH (AXI_DATA_WIDTH), .B_ADDRESS_WIDTH (DAC_ADDRESS_WIDTH), .B_DATA_WIDTH (DAC_DATA_WIDTH)) i_mem_asym ( .clka (axi_clk), .wea (axi_dvalid), .addra (axi_mem_waddr), .dina (axi_ddata), .clkb (dac_clk), .addrb (dac_mem_raddr), .doutb (dac_data)); endmodule // *************************************************************************** // ***************************************************************************