-- *************************************************************************** -- *************************************************************************** -- Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. -- -- In this HDL repository, there are many different and unique modules, consisting -- of various HDL (Verilog or VHDL) components. The individual modules are -- developed independently, and may be accompanied by separate and unique license -- terms. -- -- The user should read each of these license terms, and understand the -- freedoms and responsibilities that he or she has by using this source/core. -- -- This core is distributed in the hope that it will be useful, but WITHOUT ANY -- WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR -- A PARTICULAR PURPOSE. -- -- Redistribution and use of source or resulting binaries, with or without modification -- of this file, are permitted under one of the following two license terms: -- -- 1. The GNU General Public License version 2 as published by the -- Free Software Foundation, which can be found in the top level directory -- of this repository (LICENSE_GPL2), and also online at: -- -- -- OR -- -- 2. An ADI specific BSD license, which can be found in the top level directory -- of this repository (LICENSE_ADIBSD), and also on-line at: -- https://github.com/analogdevicesinc/hdl/blob/main/LICENSE_ADIBSD -- This will allow to generate bit files and not release the source code, -- as long as it attaches to an ADI device. -- -- *************************************************************************** -- *************************************************************************** library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity dma_fifo is generic ( RAM_ADDR_WIDTH : integer := 3; FIFO_DWIDTH : integer := 32 ); port ( clk : in std_logic; resetn : in std_logic; fifo_reset : in std_logic; -- Write port in_stb : in std_logic; in_ack : out std_logic; in_data : in std_logic_vector(FIFO_DWIDTH-1 downto 0); -- Read port out_stb : out std_logic; out_ack : in std_logic; out_data : out std_logic_vector(FIFO_DWIDTH-1 downto 0) ); end; architecture imp of dma_fifo is constant FIFO_MAX : natural := 2**RAM_ADDR_WIDTH -1; type MEM is array (0 to FIFO_MAX) of std_logic_vector(FIFO_DWIDTH - 1 downto 0); signal data_fifo : MEM; signal wr_addr : natural range 0 to FIFO_MAX; signal rd_addr : natural range 0 to FIFO_MAX; signal not_full, not_empty : Boolean; begin in_ack <= '1' when not_full else '0'; out_stb <= '1' when not_empty else '0'; out_data <= data_fifo(rd_addr); fifo_data: process (clk) is begin if rising_edge(clk) then if not_full then data_fifo(wr_addr) <= in_data; end if; end if; end process; fifo_ctrl: process (clk) is variable free_cnt : integer range 0 to FIFO_MAX + 1; begin if rising_edge(clk) then if (resetn = '0') or (fifo_reset = '1') then wr_addr <= 0; rd_addr <= 0; free_cnt := FIFO_MAX + 1; not_empty <= False; not_full <= True; else if in_stb = '1' and not_full then wr_addr <= (wr_addr + 1) mod (FIFO_MAX + 1); free_cnt := free_cnt - 1; end if; if out_ack = '1' and not_empty then rd_addr <= (rd_addr + 1) mod (FIFO_MAX + 1); free_cnt := free_cnt + 1; end if; not_full <= not (free_cnt = 0); not_empty <= not (free_cnt = FIFO_MAX + 1); end if; end if; end process; end;