// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_adcfifo_adc #( parameter ADC_DATA_WIDTH = 128, parameter AXI_DATA_WIDTH = 512 ) ( // fifo interface input adc_rst, input adc_clk, input adc_wr, input [ADC_DATA_WIDTH-1:0] adc_wdata, output reg adc_wovf, output reg adc_dwr, output reg [AXI_DATA_WIDTH-1:0] adc_ddata, // axi interface input axi_drst, input axi_clk, input [ 3:0] axi_xfer_status ); localparam ADC_MEM_RATIO = AXI_DATA_WIDTH/ADC_DATA_WIDTH; // internal registers reg [ 2:0] adc_wcnt_int = 'd0; // internal signals wire [ 3:0] adc_xfer_status_s; // write interface: supports only 64, 128, 256 and 512 against 512 always @(posedge adc_clk) begin if (adc_rst == 1'b1) begin adc_wovf <= 'd0; adc_wcnt_int <= 'd0; adc_dwr <= 'd0; adc_ddata <= 'd0; end else begin adc_wovf <= | adc_xfer_status_s; adc_dwr <= (ADC_MEM_RATIO == 8) ? adc_wr & adc_wcnt_int[0] & adc_wcnt_int[1] & adc_wcnt_int[2] : (ADC_MEM_RATIO == 4) ? adc_wr & adc_wcnt_int[0] & adc_wcnt_int[1] : (ADC_MEM_RATIO == 2) ? adc_wr & adc_wcnt_int[0] : (ADC_MEM_RATIO == 1) ? adc_wr : 'd0; if (adc_wr == 1'b1) begin adc_wcnt_int <= adc_wcnt_int + 1'b1; case (ADC_MEM_RATIO) 8: begin adc_ddata[((ADC_DATA_WIDTH*8)-1):(ADC_DATA_WIDTH*7)] <= adc_wdata; adc_ddata[((ADC_DATA_WIDTH*7)-1):(ADC_DATA_WIDTH*0)] <= adc_ddata[((ADC_DATA_WIDTH*8)-1):(ADC_DATA_WIDTH*1)]; end 4: begin adc_ddata[((ADC_DATA_WIDTH*4)-1):(ADC_DATA_WIDTH*3)] <= adc_wdata; adc_ddata[((ADC_DATA_WIDTH*3)-1):(ADC_DATA_WIDTH*0)] <= adc_ddata[((ADC_DATA_WIDTH*4)-1):(ADC_DATA_WIDTH*1)]; end 2: begin adc_ddata[((ADC_DATA_WIDTH*2)-1):(ADC_DATA_WIDTH*1)] <= adc_wdata; adc_ddata[((ADC_DATA_WIDTH*1)-1):(ADC_DATA_WIDTH*0)] <= adc_ddata[((ADC_DATA_WIDTH*2)-1):(ADC_DATA_WIDTH*1)]; end 1: begin adc_ddata <= adc_wdata; end default: begin adc_ddata <= 'd0; end endcase end end end // instantiations up_xfer_status #( .DATA_WIDTH(4) ) i_xfer_status ( .up_rstn (~adc_rst), .up_clk (adc_clk), .up_data_status (adc_xfer_status_s), .d_rst (axi_drst), .d_clk (axi_clk), .d_data_status (axi_xfer_status)); endmodule