// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // Each core or library found in this collection may have its own licensing terms. // The user should keep this in in mind while exploring these cores. // // Redistribution and use in source and binary forms, // with or without modification of this file, are permitted under the terms of either // (at the option of the user): // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory, or at: // https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_dacfifo_wr #( parameter AXI_DATA_WIDTH = 512, parameter DMA_DATA_WIDTH = 64, parameter AXI_SIZE = 6, parameter AXI_LENGTH = 15, parameter AXI_ADDRESS = 32'h00000000, parameter AXI_ADDRESS_LIMIT = 32'h00000000, parameter DMA_MEM_ADDRESS_WIDTH = 8) ( // dma fifo interface input dma_clk, input [(DMA_DATA_WIDTH-1):0] dma_data, input dma_ready, output reg dma_ready_out, input dma_valid, // request and syncronizaiton input dma_xfer_req, input dma_xfer_last, output reg [ 3:0] dma_last_beats, // syncronization for the read side output reg [31:0] axi_last_addr, output reg [ 3:0] axi_last_beats, output reg axi_xfer_out, // axi write address, write data and write response channels input axi_clk, input axi_resetn, output reg axi_awvalid, output [ 3:0] axi_awid, output [ 1:0] axi_awburst, output axi_awlock, output [ 3:0] axi_awcache, output [ 2:0] axi_awprot, output [ 3:0] axi_awqos, output [ 3:0] axi_awuser, output [ 7:0] axi_awlen, output [ 2:0] axi_awsize, output reg [31:0] axi_awaddr, input axi_awready, output axi_wvalid, output [(AXI_DATA_WIDTH-1):0] axi_wdata, output [(AXI_BYTE_WIDTH-1):0] axi_wstrb, output axi_wlast, output [ 3:0] axi_wuser, input axi_wready, input axi_bvalid, input [ 3:0] axi_bid, input [ 1:0] axi_bresp, input [ 3:0] axi_buser, output axi_bready, output reg axi_werror); localparam MEM_RATIO = AXI_DATA_WIDTH/DMA_DATA_WIDTH; // Max supported MEM_RATIO is 16 localparam AXI_MEM_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DMA_MEM_ADDRESS_WIDTH : (MEM_RATIO == 2) ? (DMA_MEM_ADDRESS_WIDTH - 1) : (MEM_RATIO == 4) ? (DMA_MEM_ADDRESS_WIDTH - 2) : (MEM_RATIO == 8) ? (DMA_MEM_ADDRESS_WIDTH - 3) : (DMA_MEM_ADDRESS_WIDTH - 4); localparam AXI_BYTE_WIDTH = AXI_DATA_WIDTH/8; localparam DMA_BYTE_WIDTH = DMA_DATA_WIDTH/8; localparam AXI_AWINCR = (AXI_LENGTH + 1) * AXI_BYTE_WIDTH; localparam DMA_BUF_THRESHOLD_HI = {(DMA_MEM_ADDRESS_WIDTH){1'b1}} - 4; // registers reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_waddr = 'd0; reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_waddr_g = 'd0; reg [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_addr_diff = 'd0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_m1 = 'd0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2 = 'd0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr = 'd0; reg dma_rst_m1 = 1'b0; reg dma_rst_m2 = 1'b0; reg [ 2:0] dma_mem_last_read_toggle_m = 3'b0; reg dma_xfer_req_d = 1'b0; reg [ 4:0] axi_xfer_req_m = 3'b0; reg [ 4:0] axi_xfer_last_m = 3'b0; reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_m1 = 'b0; reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_m2 = 'b0; reg [(DMA_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'b0; reg axi_mem_rvalid = 1'b0; reg axi_mem_rvalid_d = 1'b0; reg axi_mem_last = 1'b0; reg axi_mem_last_d = 1'b0; reg [(AXI_DATA_WIDTH-1):0] axi_mem_rdata = 'b0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_raddr_g = 'd0; reg axi_mem_read_en = 1'b0; reg axi_mem_read_en_d = 1'b0; reg axi_mem_read_en_delay = 1'b0; reg [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'b0; reg axi_mem_last_read_toggle = 1'b0; reg axi_reset = 1'b0; reg axi_xfer_init = 1'b0; reg [ 3:0] axi_wvalid_counter = 4'b0; reg axi_endof_transaction = 1'b0; reg axi_endof_transaction_d = 1'b0; // internal signals wire [(DMA_MEM_ADDRESS_WIDTH):0] dma_mem_addr_diff_s; wire [(DMA_MEM_ADDRESS_WIDTH-1):0] dma_mem_raddr_s; wire dma_mem_last_read_s; wire dma_xfer_init; wire dma_mem_wea_s; wire dma_rst_s; wire [(AXI_MEM_ADDRESS_WIDTH-1):0] axi_mem_waddr_s; wire [AXI_MEM_ADDRESS_WIDTH:0] axi_mem_addr_diff_s; wire [(AXI_DATA_WIDTH-1):0] axi_mem_rdata_s; wire axi_mem_rvalid_s; wire axi_mem_last_s; wire axi_waddr_ready_s; wire axi_wready_s; // binary to grey conversion function [7:0] b2g; input [7:0] b; reg [7:0] g; begin g[7] = b[7]; g[6] = b[7] ^ b[6]; g[5] = b[6] ^ b[5]; g[4] = b[5] ^ b[4]; g[3] = b[4] ^ b[3]; g[2] = b[3] ^ b[2]; g[1] = b[2] ^ b[1]; g[0] = b[1] ^ b[0]; b2g = g; end endfunction // grey to binary conversion function [7:0] g2b; input [7:0] g; reg [7:0] b; begin b[7] = g[7]; b[6] = b[7] ^ g[6]; b[5] = b[6] ^ g[5]; b[4] = b[5] ^ g[4]; b[3] = b[4] ^ g[3]; b[2] = b[3] ^ g[2]; b[1] = b[2] ^ g[1]; b[0] = b[1] ^ g[0]; g2b = b; end endfunction // Instantiations // An asymmetric memory to transfer data from DMAC interface to AXI Memory Map // interface ad_mem_asym #( .A_ADDRESS_WIDTH (DMA_MEM_ADDRESS_WIDTH), .A_DATA_WIDTH (DMA_DATA_WIDTH), .B_ADDRESS_WIDTH (AXI_MEM_ADDRESS_WIDTH), .B_DATA_WIDTH (AXI_DATA_WIDTH)) i_mem_asym ( .clka (dma_clk), .wea (dma_mem_wea_s), .addra (dma_mem_waddr), .dina (dma_data), .clkb (axi_clk), .addrb (axi_mem_raddr), .doutb (axi_mem_rdata_s)); ad_axis_inf_rx #(.DATA_WIDTH(AXI_DATA_WIDTH)) i_axis_inf ( .clk (axi_clk), .rst (axi_reset), .valid (axi_mem_rvalid_d), .last (axi_mem_last_d), .data (axi_mem_rdata), .inf_valid (axi_wvalid), .inf_last (axi_wlast), .inf_data (axi_wdata), .inf_ready (axi_wready)); // fifo needs a reset always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_reset <= 1'b1; end else begin axi_reset <= 1'b0; end end always @(posedge dma_clk) begin dma_rst_m1 <= ~axi_resetn; dma_rst_m2 <= dma_rst_m1; end assign dma_rst_s = dma_rst_m2; // DMA beat counter assign dma_xfer_init = dma_xfer_req & ~dma_xfer_req_d; always @(posedge dma_clk) begin dma_xfer_req_d <= dma_xfer_req; if ((dma_rst_s == 1'b1) || (dma_xfer_init == 1'b1)) begin dma_last_beats <= 4'b0; end else begin if ((dma_ready == 1'b1) && (dma_valid == 1'b1)) begin dma_last_beats <= (dma_last_beats < MEM_RATIO-1) ? dma_last_beats + 4'b1 : 4'b0; end end end // Write address generation for the asymmetric memory assign dma_mem_addr_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s; assign dma_mem_raddr_s = (MEM_RATIO == 1) ? dma_mem_raddr : (MEM_RATIO == 2) ? {dma_mem_raddr, 1'b0} : (MEM_RATIO == 4) ? {dma_mem_raddr, 2'b0} : (MEM_RATIO == 8) ? {dma_mem_raddr, 3'b0} : {dma_mem_raddr, 4'b0}; assign dma_mem_last_read_s = dma_mem_last_read_toggle_m[2] ^ dma_mem_last_read_toggle_m[1]; assign dma_mem_wea_s = dma_xfer_req & dma_valid & dma_ready; always @(posedge dma_clk) begin if (dma_rst_s == 1'b1) begin dma_mem_waddr <= 'h0; dma_mem_waddr_g <= 'h0; dma_mem_last_read_toggle_m <= 3'b0; end else begin dma_mem_last_read_toggle_m = {dma_mem_last_read_toggle_m[1:0], axi_mem_last_read_toggle}; if (dma_mem_wea_s == 1'b1) begin dma_mem_waddr <= dma_mem_waddr + 1; if (dma_xfer_last == 1'b1) begin if (dma_last_beats != (MEM_RATIO - 1)) begin dma_mem_waddr <= dma_mem_waddr + (MEM_RATIO - dma_last_beats); end end end if (dma_mem_last_read_s == 1'b1) begin dma_mem_waddr <= 'h0; end dma_mem_waddr_g <= b2g(dma_mem_waddr); end end // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin if (dma_rst_s == 1'b1) begin dma_mem_addr_diff <= 'b0; dma_mem_raddr_m1 <= 'b0; dma_mem_raddr_m2 <= 'b0; dma_mem_raddr <= 'b0; dma_ready_out <= 1'b0; end else begin dma_mem_raddr_m1 <= axi_mem_raddr_g; dma_mem_raddr_m2 <= dma_mem_raddr_m1; dma_mem_raddr <= g2b(dma_mem_raddr_m2); dma_mem_addr_diff <= dma_mem_addr_diff_s[DMA_MEM_ADDRESS_WIDTH-1:0]; if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; end else begin dma_ready_out <= 1'b1; end end end // Read address generation for the asymmetric memory // CDC for the memory write address, xfer_req and xfer_last always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_xfer_req_m <= 4'b0; axi_xfer_last_m <= 5'b0; axi_xfer_init <= 1'b0; axi_mem_waddr_m1 <= 'b0; axi_mem_waddr_m2 <= 'b0; axi_mem_waddr <= 'b0; end else begin axi_xfer_req_m <= {axi_xfer_req_m[3:0], dma_xfer_req}; axi_xfer_last_m <= {axi_xfer_last_m[3:0], dma_xfer_last}; axi_xfer_init = ~axi_xfer_req_m[2] & axi_xfer_req_m[1]; axi_mem_waddr_m1 <= dma_mem_waddr_g; axi_mem_waddr_m2 <= axi_mem_waddr_m1; axi_mem_waddr <= g2b(axi_mem_waddr_m2); end end // check if the AXI write channel is ready assign axi_wready_s = ~axi_wvalid | axi_wready; // check if there is enough data in the asymmetric memory assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr : (MEM_RATIO == 2) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):1] : (MEM_RATIO == 4) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):2] : (MEM_RATIO == 8) ? axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):3] : axi_mem_waddr[(DMA_MEM_ADDRESS_WIDTH-1):4]; assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr_s} - axi_mem_raddr; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_endof_transaction <= 1'b0; axi_endof_transaction_d <= 1'b0; end else begin axi_endof_transaction_d <= axi_endof_transaction; if ((axi_xfer_req_m[4] == 1'b1) && (axi_xfer_last_m[4] == 1'b1) && (axi_xfer_last_m[3] == 1'b0)) begin axi_endof_transaction <= 1'b1; end else if((axi_endof_transaction == 1'b1) && (axi_wlast == 1'b1) && ((axi_mem_addr_diff == 0) || (axi_mem_addr_diff > AXI_LENGTH))) begin axi_endof_transaction <= 1'b0; end end end // The asymmetric memory have to have enough data for at least one AXI burst, // before the controller start an AXI write transaction. always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_mem_read_en <= 1'b0; axi_mem_read_en_d <= 1'b0; axi_mem_read_en_delay <= 1'b0; axi_mem_addr_diff <= 'b0; end else begin axi_mem_addr_diff <= axi_mem_addr_diff_s[(AXI_MEM_ADDRESS_WIDTH-1):0]; if ((axi_mem_read_en == 1'b0) && (axi_mem_read_en_delay == 1'b0)) begin if (((axi_xfer_req_m[2] == 1'b1) && (axi_mem_addr_diff > AXI_LENGTH)) || ((axi_endof_transaction == 1'b1) && (axi_mem_addr_diff > AXI_LENGTH)) || ((axi_endof_transaction == 1'b1) && (axi_mem_addr_diff > 0))) begin axi_mem_read_en <= 1'b1; end end else if (axi_mem_last_s == 1'b1) begin axi_mem_read_en <= 1'b0; axi_mem_read_en_delay <= 1; end if (axi_wlast == 1'b1) begin axi_mem_read_en_delay <= 0; end axi_mem_read_en_d <= axi_mem_read_en; end end assign axi_mem_rvalid_s = axi_mem_read_en & axi_wready_s; assign axi_mem_last_s = (axi_wvalid_counter == axi_awlen) ? axi_mem_rvalid_s : 1'b0; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_mem_rvalid <= 1'b0; axi_mem_rvalid_d <= 1'b0; axi_mem_last <= 1'b0; axi_mem_last_d <= 1'b0; axi_mem_rdata <= 'b0; axi_mem_raddr <= 'b0; axi_wvalid_counter <= 4'b0; axi_mem_last_read_toggle <= 1'b1; axi_mem_raddr_g <= 'b0; end else begin axi_mem_rvalid <= axi_mem_rvalid_s; axi_mem_rvalid_d <= axi_mem_rvalid; axi_mem_last <= axi_mem_last_s; axi_mem_last_d <= axi_mem_last; axi_mem_rdata <= axi_mem_rdata_s; if (axi_mem_rvalid_s == 1'b1) begin axi_mem_raddr <= axi_mem_raddr + 1; axi_wvalid_counter <= ((axi_wvalid_counter == axi_awlen) || (axi_xfer_init == 1'b1)) ? 4'b0 : axi_wvalid_counter + 4'b1; end if ((axi_endof_transaction == 1'b0) && (axi_endof_transaction_d == 1'b1)) begin axi_mem_raddr <= 'b0; axi_mem_last_read_toggle <= ~axi_mem_last_read_toggle; end axi_mem_raddr_g <= b2g(axi_mem_raddr); end end // AXI Memory Map interface write address channel assign axi_awid = 4'b0000; assign axi_awburst = 2'b01; assign axi_awlock = 1'b0; assign axi_awcache = 4'b0010; assign axi_awprot = 3'b000; assign axi_awqos = 4'b0000; assign axi_awuser = 4'b0001; assign axi_awlen = AXI_LENGTH; assign axi_awsize = AXI_SIZE; assign axi_waddr_ready_s = axi_mem_read_en & ~axi_mem_read_en_d; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_awvalid <= 'd0; axi_awaddr <= AXI_ADDRESS; axi_last_addr <= AXI_ADDRESS; axi_xfer_out <= 1'b0; end else begin if (axi_awvalid == 1'b1) begin if (axi_awready == 1'b1) begin axi_awvalid <= 1'b0; end end else begin if (axi_waddr_ready_s == 1'b1) begin axi_awvalid <= 1'b1; end end if (axi_xfer_init == 1'b1) begin axi_awaddr <= (axi_xfer_out == 1'b1) ? AXI_ADDRESS : axi_last_addr; axi_xfer_out <= 1'b0; end else if ((axi_awvalid == 1'b1) && (axi_awready == 1'b1)) begin axi_awaddr <= axi_awaddr + AXI_AWINCR; end if (axi_xfer_last_m[2] == 1'b1) begin axi_xfer_out <= 1'b1; end if ((axi_awvalid == 1'b1) && (axi_endof_transaction == 1'b1)) begin axi_last_addr <= axi_awaddr; end end end // write data channel controls assign axi_wstrb = {AXI_BYTE_WIDTH{1'b1}}; assign axi_wuser = 4'b0000; // response channel assign axi_bready = 1'b1; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_werror <= 'd0; end else begin axi_werror <= axi_bvalid & axi_bresp[1]; end end // AXI beat counter always @(posedge axi_clk) begin if(axi_resetn == 1'b0) begin axi_last_beats <= 4'b0; end else begin if ((axi_endof_transaction == 1'b1) && (axi_awready == 1'b1) && (axi_awvalid == 1'b1)) begin axi_last_beats <= axi_mem_addr_diff; end else begin axi_last_beats <= axi_last_beats; end end end endmodule