// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_adcfifo #( parameter FPGA_TECHNOLOGY = 0, parameter ADC_DATA_WIDTH = 256, parameter DMA_DATA_WIDTH = 64, parameter DMA_READY_ENABLE = 1, parameter DMA_ADDRESS_WIDTH = 10 ) ( // fifo interface input adc_rst, input adc_clk, input adc_wr, input [ADC_DATA_WIDTH-1:0] adc_wdata, output adc_wovf, // dma interface input dma_clk, output dma_wr, output [DMA_DATA_WIDTH-1:0] dma_wdata, input dma_wready, input dma_xfer_req, output [ 3:0] dma_xfer_status ); localparam DMA_MEM_RATIO = ADC_DATA_WIDTH/DMA_DATA_WIDTH; localparam ADDRESS_PADDING_WIDTH = (DMA_MEM_RATIO == 1) ? 0 : (DMA_MEM_RATIO == 2) ? 1 : (DMA_MEM_RATIO == 4) ? 2 : 3; localparam ADC_ADDRESS_WIDTH = DMA_ADDRESS_WIDTH - ADDRESS_PADDING_WIDTH; localparam ADC_ADDR_LIMIT = (2**ADC_ADDRESS_WIDTH)-1; localparam DMA_ADDR_LIMIT = (2**DMA_ADDRESS_WIDTH)-1; // internal registers reg [ 2:0] adc_xfer_req_m = 'd0; reg adc_xfer_init = 'd0; reg adc_xfer_enable = 'd0; reg adc_wr_int = 'd0; reg [ADC_DATA_WIDTH-1:0] adc_wdata_int = 'd0; reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int = 'd0; reg adc_capture_arm = 1'b0; reg dma_rd = 'd0; reg dma_rd_d = 'd0; reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0; reg [DMA_ADDRESS_WIDTH:0] dma_raddr = 'd0; reg [DMA_ADDRESS_WIDTH-1:0] dma_waddr_int = 'd0; reg dma_endof_read = 'd0; // internal signals wire adc_rst_s; wire dma_wready_s; wire [DMA_DATA_WIDTH-1:0] dma_rdata_s; wire dma_read_rst_s; wire dma_wr_int_s; wire [ADC_ADDRESS_WIDTH-1:0] dma_waddr_int_s; wire adc_end_of_capture_s; wire [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int_s; // write interface assign adc_wovf = 1'd0; // synchronize the adc_rst to the adc_clk clock domain ad_rst i_adc_rst_sync ( .rst_async (adc_rst), .clk (adc_clk), .rstn (), .rst (adc_rst_s)); // optional capture synchronization always @(posedge adc_clk) begin if (adc_rst_s == 1'b1) begin adc_xfer_req_m <= 'd0; end else begin adc_xfer_req_m <= {adc_xfer_req_m[1:0], dma_xfer_req}; end end always @(posedge adc_clk) begin if (adc_rst_s == 1'b1) begin adc_xfer_init <= 'd0; end else begin adc_xfer_init <= adc_xfer_req_m[1] & ~adc_xfer_req_m[2]; end end // a de-asserted xfer_req will reset the FIFO assign dma_wr = dma_wr_int_s & dma_xfer_req; assign adc_end_of_capture_s = ((adc_waddr_int_s == ADC_ADDR_LIMIT) || (adc_xfer_req_m[2] == 1'b0)) && (adc_wr_int == 1'b1); always @(posedge adc_clk) begin if (adc_rst_s == 1'b1) begin adc_xfer_enable <= 'd0; end else begin if (adc_xfer_init == 1'b1) begin adc_xfer_enable <= 1'b1; end else if (adc_end_of_capture_s == 1'b1) begin adc_xfer_enable <= 1'b0; end end end assign adc_waddr_int_s = (adc_waddr_int == ADC_ADDR_LIMIT) ? adc_waddr_int : adc_waddr_int + 1'b1; always @(posedge adc_clk) begin if (adc_xfer_req_m[2] == 1'b0) begin adc_wr_int <= 'd0; adc_wdata_int <= 'd0; adc_waddr_int <= 'd0; end else begin adc_wr_int <= adc_wr & adc_xfer_enable; adc_wdata_int <= adc_wdata; if (adc_wr_int == 1'b1) begin adc_waddr_int <= adc_waddr_int_s; end end end // read interface assign dma_xfer_status = 4'd0; // write address synchronization sync_gray #( .DATA_WIDTH (ADC_ADDRESS_WIDTH), .ASYNC_CLK (1) ) i_dma_waddr_sync ( .in_clk (adc_clk), .in_resetn (1'b1), .in_count (adc_waddr_int), .out_resetn (1'b1), .out_clk (dma_clk), .out_count (dma_waddr_int_s)); always @(posedge dma_clk) begin if (dma_read_rst_s == 1'b1) begin dma_waddr_int <= 'd0; end else begin dma_waddr_int <= {dma_waddr_int_s,{ADDRESS_PADDING_WIDTH{1'b0}}}; end end assign dma_read_rst_s = ~dma_xfer_req; assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready; assign dma_rd_s = ((dma_raddr < {1'b0, dma_waddr_int}) || &dma_waddr_int) & dma_wready_s; always @(posedge dma_clk) begin if (dma_read_rst_s == 1'b1) begin dma_rd <= 'd0; dma_rd_d <= 'd0; dma_rdata_d <= 'd0; dma_raddr <= 'd0; dma_endof_read <= 'd0; end else begin if (dma_waddr_int != 'd0) begin dma_rd <= dma_rd_s; if (dma_rd_s == 1'b1) begin dma_raddr <= dma_raddr + 1'b1; end end dma_rd_d <= dma_rd; dma_rdata_d <= dma_rdata_s; end end // instantiations generate if (FPGA_TECHNOLOGY == 1) begin mem_asym i_mem_asym ( .mem_i_wrclock_clk (adc_clk), .mem_i_wren_wren (adc_wr_int), .mem_i_wraddress_wraddress (adc_waddr_int), .mem_i_datain_datain (adc_wdata_int), .mem_i_rdclock_clk (dma_clk), .mem_i_rdaddress_rdaddress (dma_raddr[DMA_ADDRESS_WIDTH-1:0]), .mem_o_dataout_dataout (dma_rdata_s)); end else begin ad_mem_asym #( .A_ADDRESS_WIDTH (ADC_ADDRESS_WIDTH), .A_DATA_WIDTH (ADC_DATA_WIDTH), .B_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH), .B_DATA_WIDTH (DMA_DATA_WIDTH) ) i_mem_asym ( .clka (adc_clk), .wea (adc_wr_int), .addra (adc_waddr_int), .dina (adc_wdata_int), .clkb (dma_clk), .reb (1'b1), .addrb (dma_raddr[DMA_ADDRESS_WIDTH-1:0]), .doutb (dma_rdata_s)); end endgenerate ad_axis_inf_rx #( .DATA_WIDTH(DMA_DATA_WIDTH) ) i_axis_inf ( .clk (dma_clk), .rst (dma_read_rst_s), .valid (dma_rd_d), .last (1'd0), .data (dma_rdata_d), .inf_valid (dma_wr_int_s), .inf_last (), .inf_data (dma_wdata), .inf_ready (dma_wready)); endmodule