// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory of // the repository (LICENSE_GPL2), and at: // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_adcfifo #( parameter DEVICE_TYPE = 0, parameter ADC_DATA_WIDTH = 256, parameter DMA_DATA_WIDTH = 64, parameter DMA_READY_ENABLE = 1, parameter DMA_ADDRESS_WIDTH = 10) ( // fifo interface input adc_rst, input adc_clk, input adc_wr, input [ADC_DATA_WIDTH-1:0] adc_wdata, output adc_wovf, // dma interface input dma_clk, output dma_wr, output [DMA_DATA_WIDTH-1:0] dma_wdata, input dma_wready, input dma_xfer_req, output [ 3:0] dma_xfer_status); localparam DMA_MEM_RATIO = ADC_DATA_WIDTH/DMA_DATA_WIDTH; localparam ADC_ADDRESS_WIDTH = (DMA_MEM_RATIO == 1) ? (DMA_ADDRESS_WIDTH) : (DMA_MEM_RATIO == 2) ? (DMA_ADDRESS_WIDTH - 1) : ((DMA_MEM_RATIO == 4) ? (DMA_ADDRESS_WIDTH - 2) : (DMA_ADDRESS_WIDTH - 3)); localparam ADC_ADDR_LIMIT = (2**ADC_ADDRESS_WIDTH)-1; localparam DMA_ADDR_LIMIT = (2**DMA_ADDRESS_WIDTH)-1; // internal registers reg [ 2:0] adc_xfer_req_m = 'd0; reg adc_xfer_init = 'd0; reg adc_xfer_enable = 'd0; reg adc_wr_int = 'd0; reg [ADC_DATA_WIDTH-1:0] adc_wdata_int = 'd0; reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int = 'd0; reg adc_waddr_rel_t = 'd0; reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_rel = 'd0; reg dma_rst = 'd0; reg [ 2:0] dma_waddr_rel_t_m = 'd0; reg [ADC_ADDRESS_WIDTH-1:0] dma_waddr_rel = 'd0; reg dma_rd = 'd0; reg dma_rd_d = 'd0; reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0; reg [DMA_ADDRESS_WIDTH-1:0] dma_raddr = 'd0; // internal signals wire dma_waddr_rel_t_s; wire [DMA_ADDRESS_WIDTH-1:0] dma_waddr_rel_s; wire dma_wready_s; wire dma_rd_s; wire [DMA_DATA_WIDTH-1:0] dma_rdata_s; // write interface assign adc_wovf = 1'd0; always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_xfer_req_m <= 'd0; adc_xfer_init <= 'd0; adc_xfer_enable <= 'd0; end else begin adc_xfer_req_m <= {adc_xfer_req_m[1:0], dma_xfer_req}; adc_xfer_init <= adc_xfer_req_m[1] & ~adc_xfer_req_m[2]; if (adc_xfer_init == 1'b1) begin adc_xfer_enable <= 1'b1; end else if ((adc_waddr_int >= ADC_ADDR_LIMIT - 1) || (adc_xfer_req_m[2] == 1'b0)) begin adc_xfer_enable <= 1'b0; end end end always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_wr_int <= 'd0; adc_wdata_int <= 'd0; adc_waddr_int <= 'd0; end else begin if (adc_xfer_init == 1'b1) begin adc_wr_int <= 'd0; adc_wdata_int <= 'd0; adc_waddr_int <= 'd0; end else begin adc_wr_int <= adc_wr & adc_xfer_enable; adc_wdata_int <= adc_wdata; if (adc_wr_int == 1'b1) begin adc_waddr_int <= adc_waddr_int + 1'b1; end end end end always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_waddr_rel_t <= 'd0; adc_waddr_rel <= 'd0; end else begin if ((adc_wr_int == 1'b1) && (adc_waddr_int[2:0] == 3'h7)) begin adc_waddr_rel_t <= ~adc_waddr_rel_t; adc_waddr_rel <= adc_waddr_int; end end end // read interface assign dma_xfer_status = 4'd0; assign dma_waddr_rel_t_s = dma_waddr_rel_t_m[2] ^ dma_waddr_rel_t_m[1]; assign dma_waddr_rel_s = (DMA_MEM_RATIO == 1) ? dma_waddr_rel : (DMA_MEM_RATIO == 2) ? {dma_waddr_rel, 1'd0} : ((DMA_MEM_RATIO == 4) ? {dma_waddr_rel, 2'd0} : {dma_waddr_rel, 3'd0}); always @(posedge dma_clk) begin if (dma_xfer_req == 1'b0) begin dma_rst <= 1'b1; dma_waddr_rel_t_m <= 'd0; dma_waddr_rel <= 'd0; end else begin dma_rst <= 1'b0; dma_waddr_rel_t_m <= {dma_waddr_rel_t_m[1:0], adc_waddr_rel_t}; if (dma_waddr_rel_t_s == 1'b1) begin dma_waddr_rel <= adc_waddr_rel; end end end assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready; assign dma_rd_s = (dma_raddr < dma_waddr_rel_s) ? dma_wready_s : 1'b0; always @(posedge dma_clk) begin if (dma_xfer_req == 1'b0) begin dma_rd <= 'd0; dma_rd_d <= 'd0; dma_rdata_d <= 'd0; dma_raddr <= 'd0; end else begin dma_rd <= dma_rd_s; dma_rd_d <= dma_rd; dma_rdata_d <= dma_rdata_s; if (dma_rd_s == 1'b1) begin if (dma_raddr < DMA_ADDR_LIMIT) begin dma_raddr <= dma_raddr + 1'b1; end end end end // instantiations generate if (DEVICE_TYPE == 1) begin alt_mem_asym i_mem_asym ( .mem_i_wrclock (adc_clk), .mem_i_wren (adc_wr_int), .mem_i_wraddress (adc_waddr_int), .mem_i_datain (adc_wdata_int), .mem_i_rdclock (dma_clk), .mem_i_rdaddress (dma_raddr), .mem_o_dataout (dma_rdata_s)); end else begin ad_mem_asym #( .A_ADDRESS_WIDTH (ADC_ADDRESS_WIDTH), .A_DATA_WIDTH (ADC_DATA_WIDTH), .B_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH), .B_DATA_WIDTH (DMA_DATA_WIDTH)) i_mem_asym ( .clka (adc_clk), .wea (adc_wr_int), .addra (adc_waddr_int), .dina (adc_wdata_int), .clkb (dma_clk), .addrb (dma_raddr), .doutb (dma_rdata_s)); end endgenerate ad_axis_inf_rx #(.DATA_WIDTH(DMA_DATA_WIDTH)) i_axis_inf ( .clk (dma_clk), .rst (dma_rst), .valid (dma_rd_d), .last (1'd0), .data (dma_rdata_d), .inf_valid (dma_wr), .inf_last (), .inf_data (dma_wdata), .inf_ready (dma_wready)); endmodule // *************************************************************************** // ***************************************************************************