// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory of // the repository (LICENSE_GPL2), and at: // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_dacfifo #( parameter ADDRESS_WIDTH = 6, parameter DATA_WIDTH = 128) ( // DMA interface input dma_clk, input dma_rst, input dma_valid, input [(DATA_WIDTH-1):0] dma_data, output reg dma_ready, input dma_xfer_req, input dma_xfer_last, // DAC interface input dac_clk, input dac_rst, input dac_valid, output reg [(DATA_WIDTH-1):0] dac_data, output reg dac_dunf, output reg dac_xfer_out, input bypass); localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4; // internal registers reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_raddr_m1 = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_raddr_m2 = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_raddr = 'b0; reg [(ADDRESS_WIDTH-1):0] dma_addr_diff = 'b0; reg dma_ready_fifo = 1'b0; reg dma_ready_bypass = 1'b0; reg dma_bypass = 1'b0; reg dma_bypass_m1 = 1'b0; reg dma_xfer_out_fifo = 1'b0; reg dma_xfer_out_bypass = 1'b0; reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_raddr_g = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0; reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0; reg dac_mem_ready = 1'b0; reg dac_xfer_out_fifo = 1'b0; reg dac_xfer_out_fifo_m1 = 1'b0; reg dac_xfer_out_bypass = 1'b0; reg dac_xfer_out_bypass_m1 = 1'b0; reg dac_bypass = 1'b0; reg dac_bypass_m1 = 1'b0; // internal wires wire dma_wren_s; wire [(DATA_WIDTH-1):0] dac_data_s; wire [(ADDRESS_WIDTH):0] dma_addr_diff_s; wire [(ADDRESS_WIDTH):0] dac_addr_diff_s; // binary to grey conversion function [9:0] b2g; input [9:0] b; reg [9:0] g; begin g[9] = b[9]; g[8] = b[9] ^ b[8]; g[7] = b[8] ^ b[7]; g[6] = b[7] ^ b[6]; g[5] = b[6] ^ b[5]; g[4] = b[5] ^ b[4]; g[3] = b[4] ^ b[3]; g[2] = b[3] ^ b[2]; g[1] = b[2] ^ b[1]; g[0] = b[1] ^ b[0]; b2g = g; end endfunction // grey to binary conversion function [9:0] g2b; input [9:0] g; reg [9:0] b; begin b[9] = g[9]; b[8] = b[9] ^ g[8]; b[7] = b[8] ^ g[7]; b[6] = b[7] ^ g[6]; b[5] = b[6] ^ g[5]; b[4] = b[5] ^ g[4]; b[3] = b[4] ^ g[3]; b[2] = b[3] ^ g[2]; b[1] = b[2] ^ g[1]; b[0] = b[1] ^ g[0]; g2b = b; end endfunction // DMA / Write interface // fifo is always ready, if it's not in bypass mode always @(posedge dma_clk) begin if(dma_rst == 1'b1) begin dma_ready_fifo <= 1'b0; end else begin dma_ready_fifo <= 1'b1; end end // if bypass is enabled, fifo request data until reaches the high threshold. assign dma_addr_diff_s = {1'b1, dma_waddr} - dma_raddr; always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_addr_diff <= 'b0; dma_raddr_m1 <= 'b0; dma_raddr_m2 <= 'b0; dma_raddr <= 'b0; dma_ready_bypass <= 1'b0; end else begin dma_raddr_m1 <= dac_raddr_g; dma_raddr_m2 <= dma_raddr_m1; dma_raddr <= g2b(dma_raddr_m2); dma_addr_diff <= dma_addr_diff_s[ADDRESS_WIDTH-1:0]; if (dma_addr_diff >= FIFO_THRESHOLD_HI) begin dma_ready_bypass <= 1'b0; end else begin dma_ready_bypass <= 1'b1; end end end // write address generation assign dma_wren_s = dma_valid & dma_xfer_req & dma_ready; always @(posedge dma_clk) begin if(dma_rst == 1'b1) begin dma_waddr <= 'b0; dma_waddr_g <= 'b0; dma_xfer_out_fifo <= 1'b0; dma_xfer_out_bypass <= 1'b0; end else begin if (dma_wren_s == 1'b1) begin dma_waddr <= dma_waddr + 1; dma_xfer_out_fifo <= 1'b0; end if (dma_xfer_last == 1'b1) begin dma_waddr <= 'b0; dma_xfer_out_fifo <= 1'b1; end dma_waddr_g <= b2g(dma_waddr); dma_xfer_out_bypass <= dma_xfer_req; end end // save the last write address always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_lastaddr_g <= 'b0; end else begin if (dma_bypass == 1'b0) begin dma_lastaddr_g <= (dma_xfer_last == 1'b1)? b2g(dma_waddr) : dma_lastaddr_g; end end end // DAC / Read interface // The memory module is ready if it's not empty assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr; always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_addr_diff <= 'b0; dac_waddr_m1 <= 'b0; dac_waddr_m2 <= 'b0; dac_waddr <= 'b0; dac_mem_ready <= 1'b0; end else begin dac_waddr_m1 <= dma_waddr_g; dac_waddr_m2 <= dac_waddr_m1; dac_waddr <= g2b(dac_waddr_m2); dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0]; if (dac_addr_diff > 0) begin dac_mem_ready <= 1'b1; end else begin dac_mem_ready <= 1'b0; end end end // sync lastaddr to dac clock domain always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_lastaddr_m1 <= 1'b0; dac_lastaddr_m2 <= 1'b0; dac_xfer_out_fifo_m1 <= 1'b0; dac_xfer_out_fifo <= 1'b0; dac_xfer_out_bypass_m1 <= 1'b0; dac_xfer_out_bypass <= 1'b0; end else begin dac_lastaddr_m1 <= dma_lastaddr_g; dac_lastaddr_m2 <= dac_lastaddr_m1; dac_lastaddr <= g2b(dac_lastaddr_m2); dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo; dac_xfer_out_fifo <= dac_xfer_out_fifo_m1; dac_xfer_out_bypass_m1 <= dma_xfer_out_bypass; dac_xfer_out_bypass <= dac_xfer_out_bypass_m1; end end // generate dac read address assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) : (dac_valid & dac_xfer_out_fifo); always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_raddr <= 'b0; dac_raddr_g <= 'b0; end else begin if (dac_mem_ren_s == 1'b1) begin if (dac_lastaddr == 'b0) begin dac_raddr <= dac_raddr + 1; end else begin dac_raddr <= (dac_raddr < dac_lastaddr) ? (dac_raddr + 1) : 'b0; end end dac_raddr_g <= b2g(dac_raddr); end end // memory instantiation ad_mem #( .ADDRESS_WIDTH (ADDRESS_WIDTH), .DATA_WIDTH (DATA_WIDTH)) i_mem_fifo ( .clka (dma_clk), .wea (dma_wren_s), .addra (dma_waddr), .dina (dma_data), .clkb (dac_clk), .addrb (dac_raddr), .doutb (dac_data_s)); // define underflow // underflow make sense just if bypass is enabled always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_dunf <= 1'b0; end else begin dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_out_bypass & ~dac_mem_ren_s) : 1'b0; end end // output logic always @(posedge dma_clk) begin dma_bypass_m1 <= bypass; dma_bypass <= dma_bypass_m1; end always @(posedge dac_clk) begin dac_bypass_m1 <= bypass; dac_bypass <= dac_bypass_m1; end always @(posedge dma_clk) begin dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass : dma_ready_fifo; end always @(posedge dac_clk) begin dac_data <= dac_data_s; dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_out_bypass : dac_xfer_out_fifo; end endmodule