// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module ad_dds_1 #( // parameters parameter DDS_TYPE = 1, parameter CORDIC_DW = 16, parameter CORDIC_PHASE_DW = 16) ( // interface input clk, input [15:0] angle, input [15:0] scale, output reg [15:0] dds_data); // local parameters localparam DDS_CORDIC_TYPE = 1; localparam DDS_POLINOMIAL_TYPE = 2; // internal signals wire [CORDIC_DW-1:0] sine_s; wire [ 15:0] sine16_s; wire [ 3:0] zeros; wire [ 33:0] s1_data_s; assign zeros = 0; // sine generate if (DDS_TYPE == DDS_CORDIC_TYPE) begin // the cordic module input angle width must be equal with it's width wire [CORDIC_PHASE_DW:0] angle_s; if (CORDIC_PHASE_DW >= 16) begin assign angle_s = {angle,{CORDIC_PHASE_DW-15{1'b0}}}; end else begin assign angle_s = {angle[15:16-CORDIC_PHASE_DW],1'b0}; end if (CORDIC_DW >= 16) begin assign sine16_s = sine_s[CORDIC_DW-1:CORDIC_DW-16]; end else begin assign sine16_s = {sine_s,zeros[15-CORDIC_DW:0]}; end ad_dds_sine_cordic #( .CORDIC_DW(CORDIC_DW), .PHASE_DW(CORDIC_PHASE_DW), .DELAY_DW(1)) i_dds_sine ( .clk (clk), .angle (angle_s[CORDIC_PHASE_DW:1]), .sine (sine_s), .cosine (), .ddata_in (1'b0), .ddata_out ()); end else begin assign sine16_s = sine_s; ad_dds_sine i_dds_sine ( .clk (clk), .angle (angle), .sine (sine_s), .ddata_in (1'b0), .ddata_out ()); end endgenerate // scale for a 16 bit sine generator ad_mul #(.DELAY_DATA_WIDTH(1)) i_dds_scale ( .clk (clk), .data_a ({sine16_s[15], sine16_s}), .data_b ({scale[15], scale}), .data_p (s1_data_s), .ddata_in (1'b0), .ddata_out ()); // dds data always @(posedge clk) begin dds_data <= s1_data_s[29:14]; end endmodule // *************************************************************************** // ***************************************************************************