// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsabilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/1ps module axi_xcvrlb_1 ( // transceiver interface input ref_clk, input rx_p, input rx_n, output tx_p, output tx_n, // processor interface input up_rstn, input up_clk, input up_resetn, output up_status); // internal registers reg [ 3:0] rx_kcount = 'd0; reg rx_calign = 'd0; reg [31:0] rx_data = 'd0; reg [31:0] rx_pn_data = 'd0; reg tx_charisk = 'd0; reg [31:0] tx_data = 'd0; reg [31:0] tx_pn_data = 'd0; reg [ 3:0] up_pll_rst_cnt = 'd0; reg [ 3:0] up_rst_cnt = 'd0; reg [ 6:0] up_user_ready_cnt = 'd0; reg up_status_int = 'd1; // internal signals wire clk; wire rx_status_s; wire [31:0] rx_pn_data_s; wire rx_pn_oos_s; wire rx_pn_err_s; wire [ 3:0] rx_charisk_s; wire [ 7:0] rx_error_s; wire [31:0] rx_data_s; wire up_pll_rst_s; wire up_rst_s; wire up_user_ready_s; wire up_pll_locked_s; wire up_rst_done_s; wire up_pn_oos_s; wire up_pn_err_s; wire up_rx_pll_locked_s; wire up_rx_rst_done_s; wire up_tx_pll_locked_s; wire up_tx_rst_done_s; // pn31 function function [31:0] pn31; input [31:0] din; reg [31:0] dout; begin dout[31] = din[31] ^ din[28]; dout[30] = din[30] ^ din[27]; dout[29] = din[29] ^ din[26]; dout[28] = din[28] ^ din[25]; dout[27] = din[27] ^ din[24]; dout[26] = din[26] ^ din[23]; dout[25] = din[25] ^ din[22]; dout[24] = din[24] ^ din[21]; dout[23] = din[23] ^ din[20]; dout[22] = din[22] ^ din[19]; dout[21] = din[21] ^ din[18]; dout[20] = din[20] ^ din[17]; dout[19] = din[19] ^ din[16]; dout[18] = din[18] ^ din[15]; dout[17] = din[17] ^ din[14]; dout[16] = din[16] ^ din[13]; dout[15] = din[15] ^ din[12]; dout[14] = din[14] ^ din[11]; dout[13] = din[13] ^ din[10]; dout[12] = din[12] ^ din[ 9]; dout[11] = din[11] ^ din[ 8]; dout[10] = din[10] ^ din[ 7]; dout[ 9] = din[ 9] ^ din[ 6]; dout[ 8] = din[ 8] ^ din[ 5]; dout[ 7] = din[ 7] ^ din[ 4]; dout[ 6] = din[ 6] ^ din[ 3]; dout[ 5] = din[ 5] ^ din[ 2]; dout[ 4] = din[ 4] ^ din[ 1]; dout[ 3] = din[ 3] ^ din[ 0]; dout[ 2] = din[ 2] ^ din[31] ^ din[28]; dout[ 1] = din[ 1] ^ din[30] ^ din[27]; dout[ 0] = din[ 0] ^ din[29] ^ din[26]; pn31 = dout; end endfunction // receive assign rx_status_s = ~(| rx_error_s); assign rx_pn_data_s = (rx_pn_oos_s == 1'b1) ? rx_data : rx_pn_data; always @(posedge clk) begin if (rx_status_s == 1'b0) begin rx_kcount <= 4'd0; rx_calign <= 1'd1; end else if ((rx_charisk_s == 4'hf) && (rx_data_s == {4{8'hbc}})) begin rx_kcount <= rx_kcount + 1'b1; if (rx_kcount == 4'hf) begin rx_calign <= 1'd0; end end end always @(posedge clk) begin if (rx_status_s == 1'b1) begin rx_data[31:24] = rx_data_s[ 7: 0]; rx_data[23:16] = rx_data_s[15: 8]; rx_data[15: 8] = rx_data_s[23:16]; rx_data[ 7: 0] = rx_data_s[31:24]; end else begin rx_data[31:24] = 8'hff; rx_data[23:16] = 8'hff; rx_data[15: 8] = 8'hff; rx_data[ 7: 0] = 8'hff; end rx_pn_data <= pn31(rx_pn_data_s); end // transmit always @(posedge clk) begin if (rx_calign == 1'b0) begin tx_charisk <= 1'd0; tx_data[31:24] <= tx_pn_data[ 7: 0]; tx_data[23:16] <= tx_pn_data[15: 8]; tx_data[15: 8] <= tx_pn_data[23:16]; tx_data[ 7: 0] <= tx_pn_data[31:24]; tx_pn_data <= pn31(tx_pn_data); end else begin tx_charisk <= 1'd1; tx_data[31:24] <= 8'hbc; tx_data[23:16] <= 8'hbc; tx_data[15: 8] <= 8'hbc; tx_data[ 7: 0] <= 8'hbc; tx_pn_data <= {32{1'b1}}; end end // reset & init assign up_status = up_status_int; assign up_pll_rst_s = up_pll_rst_cnt[3]; assign up_rst_s = up_rst_cnt[3]; assign up_user_ready_s = up_user_ready_cnt[6]; assign up_pll_locked_s = up_rx_pll_locked_s & up_tx_pll_locked_s; assign up_rst_done_s = up_rx_rst_done_s & up_tx_rst_done_s; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_pll_rst_cnt <= 4'h8; up_rst_cnt <= 4'h8; up_user_ready_cnt <= 7'h00; up_status_int <= 1'b1; end else begin if (up_resetn == 1'b0) begin up_pll_rst_cnt <= 4'h8; end else if (up_pll_rst_cnt[3] == 1'b1) begin up_pll_rst_cnt <= up_pll_rst_cnt + 1'b1; end if ((up_resetn == 1'b0) || (up_pll_rst_cnt[3] == 1'b1) || (up_pll_locked_s == 1'b0)) begin up_rst_cnt <= 4'h8; end else if (up_rst_cnt[3] == 1'b1) begin up_rst_cnt <= up_rst_cnt + 1'b1; end if ((up_resetn == 1'b0) || (up_rst_cnt[3] == 1'b1)) begin up_user_ready_cnt <= 7'h00; end else if (up_user_ready_cnt[6] == 1'b0) begin up_user_ready_cnt <= up_user_ready_cnt + 1'b1; end if ((up_resetn == 1'b0) || (up_rst_done_s == 1'b0)) begin up_status_int <= 1'b1; end else begin up_status_int <= up_pn_oos_s | up_pn_err_s; end end end // instantiations ad_pnmon #(.DATA_WIDTH(32)) i_pnmon ( .adc_clk (clk), .adc_valid_in (1'b1), .adc_data_in (rx_data), .adc_data_pn (rx_pn_data), .adc_pn_oos (rx_pn_oos_s), .adc_pn_err (rx_pn_err_s)); up_xfer_status #(.DATA_WIDTH(2)) i_xfer_status ( .up_rstn (up_rstn), .up_clk (up_clk), .up_data_status ({up_pn_err_s, up_pn_oos_s}), .d_rst (1'b0), .d_clk (clk), .d_data_status ({rx_pn_err_s, rx_pn_oos_s})); util_adxcvr_xch #( .XCVR_TYPE (0), .CPLL_FBDIV (2), .CPLL_FBDIV_4_5 (5), .TX_OUT_DIV (1), .TX_CLK25_DIV (10), .RX_OUT_DIV (1), .RX_CLK25_DIV (10), .RX_DFE_LPM_CFG (16'h0904), .RX_PMA_CFG ('h00018480), .RX_CDR_CFG ('h03000023ff10200020)) i_xch ( .qpll2ch_clk (1'b0), .qpll2ch_ref_clk (1'b0), .qpll2ch_locked (1'b1), .cpll_ref_clk (ref_clk), .up_cpll_rst (up_pll_rst_s), .rx_p (rx_p), .rx_n (rx_n), .rx_out_clk (clk), .rx_clk (clk), .rx_charisk (rx_charisk_s), .rx_disperr (rx_error_s[3:0]), .rx_notintable (rx_error_s[7:4]), .rx_data (rx_data_s), .rx_calign (rx_calign), .tx_p (tx_p), .tx_n (tx_n), .tx_out_clk (), .tx_clk (clk), .tx_charisk ({4{tx_charisk}}), .tx_data (tx_data), .up_rstn (up_rstn), .up_clk (up_clk), .up_es_enb (1'd0), .up_es_addr (12'd0), .up_es_wr (1'd0), .up_es_wdata (16'd0), .up_es_rdata (), .up_es_ready (), .up_rx_pll_locked (up_rx_pll_locked_s), .up_rx_rst (up_rst_s), .up_rx_user_ready (up_user_ready_s), .up_rx_rst_done (up_rx_rst_done_s), .up_rx_lpm_dfe_n (1'd0), .up_rx_rate (3'd0), .up_rx_sys_clk_sel (2'd0), .up_rx_out_clk_sel (3'd2), .up_rx_enb (1'd0), .up_rx_addr (12'd0), .up_rx_wr (1'd0), .up_rx_wdata (16'd0), .up_rx_rdata (), .up_rx_ready (), .up_tx_pll_locked (up_tx_pll_locked_s), .up_tx_rst (up_rst_s), .up_tx_user_ready (up_user_ready_s), .up_tx_rst_done (up_tx_rst_done_s), .up_tx_lpm_dfe_n (1'd0), .up_tx_rate (3'd0), .up_tx_sys_clk_sel (2'd0), .up_tx_out_clk_sel (3'd2), .up_tx_enb (1'd0), .up_tx_addr (12'd0), .up_tx_wr (1'd0), .up_tx_wdata (16'd0), .up_tx_rdata (), .up_tx_ready ()); endmodule // *************************************************************************** // ***************************************************************************