// *************************************************************************** // *************************************************************************** // Copyright (C) 2017-2024 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/main/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_logic_analyzer ( // interface input clk, output clk_out, input [15:0] data_i, output reg [15:0] data_o, output [15:0] data_t, input [ 1:0] trigger_i, output adc_valid, output reg [15:0] adc_data, input [15:0] dac_data, input dac_valid, output reg dac_read, input [ 2:0] external_rate, input external_valid, input external_decimation_en, input trigger_in, output trigger_out, output trigger_out_adc, output [31:0] fifo_depth, // axi interface input s_axi_aclk, input s_axi_aresetn, input s_axi_awvalid, input [ 6:0] s_axi_awaddr, input [ 2:0] s_axi_awprot, output s_axi_awready, input s_axi_wvalid, input [31:0] s_axi_wdata, input [ 3:0] s_axi_wstrb, output s_axi_wready, output s_axi_bvalid, output [ 1:0] s_axi_bresp, input s_axi_bready, input s_axi_arvalid, input [ 6:0] s_axi_araddr, input [ 2:0] s_axi_arprot, output s_axi_arready, output s_axi_rvalid, output [31:0] s_axi_rdata, output [ 1:0] s_axi_rresp, input s_axi_rready ); // internal registers reg [15:0] data_r = 'd0; reg [15:0] data_src_select = 'd0; reg [ 1:0] trigger_m1 = 'd0; reg [31:0] downsampler_counter_la = 'd0; reg [31:0] upsampler_counter_pg = 'd0; reg sample_valid_la = 'd0; reg [15:0] io_selection; // 1 - input, 0 - output reg [31:0] delay_counter = 'd0; reg triggered = 'd0; reg up_triggered; reg up_triggered_d1; reg up_triggered_d2; reg up_triggered_set; reg up_triggered_reset; reg up_triggered_reset_d1; reg up_triggered_reset_d2; reg streaming_on; reg [ 1:0] trigger_i_m1 = 2'd0; reg [ 1:0] trigger_i_m2 = 2'd0; reg [ 1:0] trigger_i_m3 = 2'd0; reg trigger_adc_m1 = 1'd0; reg trigger_adc_m2 = 1'd0; reg trigger_la_m2 = 1'd0; reg pg_trigered = 1'd0; reg [ 1:0] any_edge_trigger = 1'd0; reg [ 1:0] rise_edge_trigger = 1'd0; reg [ 1:0] fall_edge_trigger = 1'd0; reg [ 1:0] high_level_trigger = 1'd0; reg [ 1:0] low_level_trigger = 1'd0; reg [31:0] trigger_holdoff_counter = 32'd0; reg [ 3:0] adc_data_delay = 4'd0; reg [16:0] data_fixed_delay [0:15]; reg [15:0] data_dynamic_delay [0:15]; // internal signals wire up_clk; wire up_rstn; wire [ 4:0] up_waddr; wire [31:0] up_wdata; wire up_wack; wire up_wreq; wire up_rack; wire [31:0] up_rdata; wire up_rreq; wire [ 4:0] up_raddr; wire reset; wire [31:0] divider_counter_la; wire [31:0] divider_counter_pg; wire [17:0] edge_detect_enable; wire [17:0] rise_edge_enable; wire [17:0] fall_edge_enable; wire [17:0] low_level_enable; wire [17:0] high_level_enable; wire [ 6:0] trigger_logic; // 0-OR,1-AND wire clock_select; wire [15:0] overwrite_enable; wire [15:0] overwrite_data; wire [15:0] io_selection_s; // 1 - input, 0 - output wire [15:0] od_pp_n; // 0 - push/pull, 1 - open drain wire trigger_out_s; wire [31:0] trigger_delay; wire trigger_out_delayed; wire [19:0] pg_trigger_config; wire [ 1:0] pg_en_trigger_pins; wire pg_en_trigger_adc; wire pg_en_trigger_la; wire [ 1:0] pg_low_level; wire [ 1:0] pg_high_level; wire [ 1:0] pg_any_edge; wire [ 1:0] pg_rise_edge; wire [ 1:0] pg_fall_edge; wire [31:0] trigger_holdoff; wire trigger_out_holdoff; wire streaming; wire [ 3:0] in_data_delay; wire [ 3:0] up_data_delay; wire master_delay_ctrl; wire [ 9:0] data_delay_control; wire [15:0] adc_data_mn; genvar i; // signal name changes assign up_clk = s_axi_aclk; assign up_rstn = s_axi_aresetn; assign trigger_out = trigger_delay == 32'h0 ? trigger_out_holdoff | streaming_on : trigger_out_delayed | streaming_on; assign trigger_out_delayed = delay_counter == 32'h0 ? 1 : 0; always @(posedge clk_out) begin if (trigger_delay == 0) begin if (streaming == 1'b1 && sample_valid_la == 1'b1 && trigger_out_holdoff == 1'b1) begin streaming_on <= 1'b1; end else if (streaming == 1'b0) begin streaming_on <= 1'b0; end end else begin if (streaming == 1'b1 && sample_valid_la == 1'b1 && trigger_out_delayed == 1'b1) begin streaming_on <= 1'b1; end else if (streaming == 1'b0) begin streaming_on <= 1'b0; end end end always @(posedge clk_out) begin if (sample_valid_la == 1'b1 && trigger_out_holdoff == 1'b1) begin up_triggered_set <= 1'b1; end else if (up_triggered_reset == 1'b1) begin up_triggered_set <= 1'b0; end up_triggered_reset_d1 <= up_triggered; up_triggered_reset_d2 <= up_triggered_reset_d1; up_triggered_reset <= up_triggered_reset_d2; end always @(posedge up_clk) begin up_triggered_d1 <= up_triggered_set; up_triggered_d2 <= up_triggered_d1; up_triggered <= up_triggered_d2; end generate for (i = 0 ; i < 16; i = i + 1) begin assign data_t[i] = od_pp_n[i] ? io_selection[i] | data_o[i] : io_selection[i]; always @(posedge clk_out) begin data_o[i] <= data_src_select[i] ? overwrite_data[i] : data_r[i]; end always @(posedge clk_out) begin data_src_select[i] <= data_src_select[i] ? (~dac_valid) | overwrite_enable[i]: overwrite_enable[i]; end always @(posedge clk_out) begin if(dac_valid == 1'b1) begin data_r[i] <= dac_data[i]; end else begin if (data_src_select[i] == 1'b1) begin data_r[i] <= overwrite_data[i]; end end if (io_selection_s[i] == 1'b1) begin io_selection[i] <= 1'b1; end else begin if(dac_valid == 1'b1 || overwrite_enable[i] == 1'b1) begin io_selection[i] <= 1'b0; end end end end endgenerate BUFGMUX_CTRL BUFGMUX_CTRL_inst ( .O (clk_out), .I0 (clk), .I1 (data_i[0]), .S (clock_select)); // - synchronization // - compensate for m2k adc path delay // 17 clock cycles delay generate for (i = 0 ; i < 16; i = i + 1) begin always @(posedge clk_out) begin if (reset == 1'b1) begin data_fixed_delay[i] <= 'd0; end else begin data_fixed_delay[i] <= {data_fixed_delay[i][15:0], data_i[i]}; end end end // dynamic sample delay (1 to 16) for (i = 0 ; i < 16; i = i + 1) begin always @(posedge clk_out) begin if (sample_valid_la == 1'b1) begin data_dynamic_delay[i] <= {data_dynamic_delay[i][14:0], data_fixed_delay[i][16]}; end end assign adc_data_mn[i] = data_dynamic_delay[i][in_data_delay[3:0]]; end endgenerate // adc path 'rate delay' given by axi_adc_decimate always @(posedge clk_out) begin case (external_rate) 3'd0: adc_data_delay <= 4'd1; // 100MSPS 3'd1: adc_data_delay <= 4'd3; // 10MSPS default: adc_data_delay <= 4'd1; // <= 1MSPS endcase end assign up_data_delay = data_delay_control[3:0]; assign rate_gen_select = data_delay_control[8]; // select if the delay taps number is chosen by the user or automatically assign master_delay_ctrl = data_delay_control[9]; assign in_data_delay = master_delay_ctrl ? up_data_delay : external_decimation_en ? 4'd0 : adc_data_delay; always @(posedge clk_out) begin if (sample_valid_la == 1'b1) begin adc_data <= adc_data_mn; end end assign adc_valid = sample_valid_la; always @(posedge clk_out) begin trigger_m1 <= trigger_i; end // downsampler logic analyzer always @(posedge clk_out) begin if (reset == 1'b1) begin sample_valid_la <= 1'b0; downsampler_counter_la <= 32'h0; end else begin if (rate_gen_select) begin downsampler_counter_la <= 32'h0; sample_valid_la <= external_valid; end else if (downsampler_counter_la < divider_counter_la ) begin downsampler_counter_la <= downsampler_counter_la + 1; sample_valid_la <= 1'b0; end else begin downsampler_counter_la <= 32'h0; sample_valid_la <= 1'b1; end end end // pattern generator instrument triggering assign pg_any_edge = pg_trigger_config[1:0]; assign pg_rise_edge = pg_trigger_config[3:2]; assign pg_fall_edge = pg_trigger_config[5:4]; assign pg_low_level = pg_trigger_config[7:6]; assign pg_high_level = pg_trigger_config[9:8]; assign pg_en_trigger_pins = pg_trigger_config[17:16]; assign pg_en_trigger_adc = pg_trigger_config[18]; assign pg_en_trigger_la = pg_trigger_config[19]; assign trigger_active = |pg_trigger_config[19:16]; assign trigger = (ext_trigger & pg_en_trigger_pins) | (trigger_adc_m2 & pg_en_trigger_adc) | (trigger_out_s & pg_en_trigger_la); assign ext_trigger = |(any_edge_trigger | rise_edge_trigger | fall_edge_trigger | high_level_trigger | low_level_trigger); // sync always @(posedge clk) begin trigger_i_m1 <= trigger_i; trigger_i_m2 <= trigger_i_m1; trigger_i_m3 <= trigger_i_m2; trigger_adc_m1 <= trigger_in; trigger_adc_m2 <= trigger_adc_m1; end always @(posedge clk) begin any_edge_trigger <= (trigger_i_m3 ^ trigger_i_m2) & pg_any_edge; rise_edge_trigger <= (~trigger_i_m3 & trigger_i_m2) & pg_rise_edge; fall_edge_trigger <= (trigger_i_m3 & ~trigger_i_m2) & pg_fall_edge; high_level_trigger <= trigger_i_m3 & pg_high_level; low_level_trigger <= ~trigger_i_m3 & pg_low_level; end // upsampler pattern generator always @(posedge clk_out) begin if (reset == 1'b1) begin upsampler_counter_pg <= 32'h0; dac_read <= 1'b0; end else begin dac_read <= 1'b0; pg_trigered <= trigger_active ? (trigger | pg_trigered) : 1'b0; if (trigger_active & !pg_trigered) begin upsampler_counter_pg <= 32'h0; dac_read <= 1'b0; end else if (upsampler_counter_pg < divider_counter_pg) begin upsampler_counter_pg <= upsampler_counter_pg + 1; end else begin upsampler_counter_pg <= 32'h0; dac_read <= 1'b1; end end end always @(posedge clk_out) begin if(trigger_delay == 32'h0) begin delay_counter <= 32'h0; end else begin if (adc_valid == 1'b1) begin triggered <= trigger_out_holdoff | triggered; if (delay_counter == 32'h0) begin delay_counter <= trigger_delay; triggered <= 1'b0; end else begin if(triggered == 1'b1 || trigger_out_holdoff == 1'b1) begin delay_counter <= delay_counter - 1; end end end end end // hold off trigger assign trigger_out_holdoff = (trigger_holdoff_counter != 0) ? 0 : trigger_out_s; assign holdoff_cnt_en = |trigger_holdoff; always @(posedge clk) begin if (reset == 1'b1) begin trigger_holdoff_counter <= 0; end else begin if (trigger_holdoff_counter != 0) begin trigger_holdoff_counter <= trigger_holdoff_counter - 1'b1; end else if (trigger_out_holdoff == 1'b1) begin trigger_holdoff_counter <= trigger_holdoff; end else begin trigger_holdoff_counter <= trigger_holdoff_counter; end end end axi_logic_analyzer_trigger i_trigger ( .clk (clk_out), .reset (reset), .data (adc_data_mn), .data_valid(sample_valid_la), .trigger_i (trigger_m1), .trigger_in (trigger_in), .edge_detect_enable (edge_detect_enable), .rise_edge_enable (rise_edge_enable), .fall_edge_enable (fall_edge_enable), .low_level_enable (low_level_enable), .high_level_enable (high_level_enable), .trigger_logic (trigger_logic), .trigger_out_adc (trigger_out_adc), .trigger_out (trigger_out_s)); axi_logic_analyzer_reg i_registers ( .clk (clk_out), .reset (reset), .divider_counter_la (divider_counter_la), .divider_counter_pg (divider_counter_pg), .io_selection (io_selection_s), .edge_detect_enable (edge_detect_enable), .rise_edge_enable (rise_edge_enable), .fall_edge_enable (fall_edge_enable), .low_level_enable (low_level_enable), .high_level_enable (high_level_enable), .fifo_depth (fifo_depth), .trigger_delay (trigger_delay), .trigger_holdoff (trigger_holdoff), .trigger_logic (trigger_logic), .clock_select (clock_select), .overwrite_enable (overwrite_enable), .overwrite_data (overwrite_data), .input_data (adc_data_mn), .od_pp_n (od_pp_n), .triggered (up_triggered), .pg_trigger_config (pg_trigger_config), .streaming(streaming), .data_delay_control (data_delay_control), // bus interface .up_rstn (up_rstn), .up_clk (up_clk), .up_wreq (up_wreq), .up_waddr (up_waddr), .up_wdata (up_wdata), .up_wack (up_wack), .up_rreq (up_rreq), .up_raddr (up_raddr), .up_rdata (up_rdata), .up_rack (up_rack)); // axi interface up_axi #( .AXI_ADDRESS_WIDTH(7) ) i_up_axi ( .up_rstn (up_rstn), .up_clk (up_clk), .up_axi_awvalid (s_axi_awvalid), .up_axi_awaddr (s_axi_awaddr), .up_axi_awready (s_axi_awready), .up_axi_wvalid (s_axi_wvalid), .up_axi_wdata (s_axi_wdata), .up_axi_wstrb (s_axi_wstrb), .up_axi_wready (s_axi_wready), .up_axi_bvalid (s_axi_bvalid), .up_axi_bresp (s_axi_bresp), .up_axi_bready (s_axi_bready), .up_axi_arvalid (s_axi_arvalid), .up_axi_araddr (s_axi_araddr), .up_axi_arready (s_axi_arready), .up_axi_rvalid (s_axi_rvalid), .up_axi_rresp (s_axi_rresp), .up_axi_rdata (s_axi_rdata), .up_axi_rready (s_axi_rready), .up_wreq (up_wreq), .up_waddr (up_waddr), .up_wdata (up_wdata), .up_wack (up_wack), .up_rreq (up_rreq), .up_raddr (up_raddr), .up_rdata (up_rdata), .up_rack (up_rack)); endmodule