// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // Each core or library found in this collection may have its own licensing terms. // The user should keep this in in mind while exploring these cores. // // Redistribution and use in source and binary forms, // with or without modification of this file, are permitted under the terms of either // (at the option of the user): // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory, or at: // https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_dacfifo_bypass #( parameter DAC_DATA_WIDTH = 64, parameter DMA_DATA_WIDTH = 64) ( // dma fifo interface input dma_clk, input [(DMA_DATA_WIDTH-1):0] dma_data, input dma_ready, output reg dma_ready_out, input dma_valid, // request and syncronizaiton input dma_xfer_req, // dac fifo interface input dac_clk, input dac_rst, input dac_valid, output reg [(DAC_DATA_WIDTH-1):0] dac_data, output reg dac_dunf ); // suported ratios: 1:1 / 1:2 / 1:4 / 1:8 / 2:1 / 4:1 / 8:1 localparam MEM_RATIO = (DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? DMA_DATA_WIDTH/DAC_DATA_WIDTH : DAC_DATA_WIDTH/DMA_DATA_WIDTH; localparam DAC_ADDRESS_WIDTH = 10; localparam DMA_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH : (MEM_RATIO == 2) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 1) : (DAC_ADDRESS_WIDTH + 1)) : (MEM_RATIO == 4) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 2) : (DAC_ADDRESS_WIDTH + 2)) : ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 3) : (DAC_ADDRESS_WIDTH + 3)); localparam DMA_BUF_THRESHOLD_HI = {(DMA_ADDRESS_WIDTH){1'b1}} - 4; localparam DAC_BUF_THRESHOLD_LO = 4; reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr = 'd0; reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_g = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0; reg dma_rst_m1 = 1'b0; reg dma_rst = 1'b0; reg [DMA_ADDRESS_WIDTH-1:0] dma_mem_addr_diff = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m1 = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2 = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr = 1'b0; reg [DAC_ADDRESS_WIDTH-1:0] dac_mem_addr_diff = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr = 1'b0; reg dac_mem_ready = 1'b0; reg dac_xfer_out = 1'b0; reg dac_xfer_out_m1 = 1'b0; // internal signals wire dma_mem_last_read_s; wire [(DMA_ADDRESS_WIDTH):0] dma_mem_addr_diff_s; wire [(DAC_ADDRESS_WIDTH):0] dac_mem_addr_diff_s; wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_raddr_s; wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_s; wire dma_mem_wea_s; wire dac_mem_rea_s; wire [(DAC_DATA_WIDTH-1):0] dac_mem_rdata_s; wire [DMA_ADDRESS_WIDTH:0] dma_address_diff_s; wire [DAC_ADDRESS_WIDTH:0] dac_address_diff_s; // binary to grey conversion function [7:0] b2g; input [7:0] b; reg [7:0] g; begin g[7] = b[7]; g[6] = b[7] ^ b[6]; g[5] = b[6] ^ b[5]; g[4] = b[5] ^ b[4]; g[3] = b[4] ^ b[3]; g[2] = b[3] ^ b[2]; g[1] = b[2] ^ b[1]; g[0] = b[1] ^ b[0]; b2g = g; end endfunction // grey to binary conversion function [7:0] g2b; input [7:0] g; reg [7:0] b; begin b[7] = g[7]; b[6] = b[7] ^ g[6]; b[5] = b[6] ^ g[5]; b[4] = b[5] ^ g[4]; b[3] = b[4] ^ g[3]; b[2] = b[3] ^ g[2]; b[1] = b[2] ^ g[1]; b[0] = b[1] ^ g[0]; g2b = b; end endfunction // An asymmetric memory to transfer data from DMAC interface to DAC interface ad_mem_asym #( .A_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH), .A_DATA_WIDTH (DMA_DATA_WIDTH), .B_ADDRESS_WIDTH (DAC_ADDRESS_WIDTH), .B_DATA_WIDTH (DAC_DATA_WIDTH)) i_mem_asym ( .clka (dma_clk), .wea (dma_mem_wea_s), .addra (dma_mem_waddr), .dina (dma_data), .clkb (dac_clk), .addrb (dac_mem_raddr), .doutb (dac_mem_rdata_s)); // dma reset is brought from dac domain always @(posedge dma_clk) begin dma_rst_m1 <= dac_rst; dma_rst <= dma_rst_m1; end // Write address generation for the asymmetric memory assign dma_mem_wea_s = dma_xfer_req & dma_valid & dma_ready; always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_mem_waddr <= 'h0; dma_mem_waddr_g <= 'h0; end else begin if (dma_mem_wea_s == 1'b1) begin dma_mem_waddr <= dma_mem_waddr + 1; end dma_mem_waddr_g <= b2g(dma_mem_waddr); end end // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_mem_addr_diff <= 'b0; dma_mem_raddr_m1 <= 'b0; dma_mem_raddr_m2 <= 'b0; dma_mem_raddr <= 'b0; dma_ready_out <= 1'b0; end else begin dma_mem_raddr_m1 <= dac_mem_raddr_g; dma_mem_raddr_m2 <= dma_mem_raddr_m1; dma_mem_raddr <= g2b(dma_mem_raddr_m2); dma_mem_addr_diff <= dma_address_diff_s[DMA_ADDRESS_WIDTH-1:0]; if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; end else begin dma_ready_out <= 1'b1; end end end // relative address offset on dma domain assign dma_address_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s; assign dma_mem_raddr_s = (DMA_DATA_WIDTH>DAC_DATA_WIDTH) ? ((MEM_RATIO == 1) ? (dma_mem_raddr) : (MEM_RATIO == 2) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):1]) : (MEM_RATIO == 4) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):2]) : (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):3])) : ((MEM_RATIO == 1) ? (dma_mem_raddr) : (MEM_RATIO == 2) ? ({dma_mem_raddr, 1'b0}) : (MEM_RATIO == 4) ? ({dma_mem_raddr, 2'b0}) : ({dma_mem_raddr, 3'b0})); // relative address offset on dac domain assign dac_address_diff_s = {1'b1, dac_mem_raddr} - dac_mem_waddr_s; assign dac_mem_waddr_s = (DAC_DATA_WIDTH>DMA_DATA_WIDTH) ? ((MEM_RATIO == 1) ? (dac_mem_waddr) : (MEM_RATIO == 2) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):1]) : (MEM_RATIO == 4) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):2]) : (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):3])) : ((MEM_RATIO == 1) ? (dac_mem_waddr) : (MEM_RATIO == 2) ? ({dac_mem_waddr, 1'b0}) : (MEM_RATIO == 4) ? ({dac_mem_waddr, 2'b0}) : ({dac_mem_waddr, 3'b0})); // Read address generation for the asymmetric memory assign dac_mem_rea_s = dac_valid & dac_mem_ready; always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_mem_raddr <= 'h0; dac_mem_raddr_g <= 'h0; end else begin if (dac_mem_rea_s == 1'b1) begin dac_mem_raddr <= dac_mem_raddr + 1; end dac_mem_raddr_g <= b2g(dac_mem_raddr); end end // The memory module is ready if it's not empty always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_mem_addr_diff <= 'b0; dac_mem_waddr_m1 <= 'b0; dac_mem_waddr_m2 <= 'b0; dac_mem_waddr <= 'b0; dac_mem_ready <= 1'b0; end else begin dac_mem_waddr_m1 <= dma_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; dac_mem_waddr <= g2b(dac_mem_waddr_m2); dac_mem_addr_diff <= dac_address_diff_s[DAC_ADDRESS_WIDTH-1:0]; if (dac_mem_addr_diff > 0) begin dac_mem_ready <= 1'b1; end else begin dac_mem_ready <= 1'b0; end end end // define underflow always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_xfer_out_m1 <= 1'b0; dac_xfer_out <= 1'b0; dac_dunf <= 1'b0; end else begin dac_xfer_out_m1 <= dma_xfer_req; dac_xfer_out <= dac_xfer_out_m1; dac_dunf <= (dac_valid == 1'b1) ? (dac_xfer_out & ~dac_mem_ready) : dac_dunf; end end // DAC data output logic always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_data <= 0; end else begin dac_data <= dac_mem_rdata_s; end end endmodule