// // The ADI JESD204 Core is released under the following license, which is // different than all other HDL cores in this repository. // // Please read this, and understand the freedoms and responsibilities you have // by using this source code/core. // // The JESD204 HDL, is copyright © 2016-2017 Analog Devices Inc. // // This core is free software, you can use run, copy, study, change, ask // questions about and improve this core. Distribution of source, or resulting // binaries (including those inside an FPGA or ASIC) require you to release the // source of the entire project (excluding the system libraries provide by the // tools/compiler/FPGA vendor). These are the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License version 2 // along with this source code, and binary. If not, see // . // // Commercial licenses (with commercial support) of this JESD204 core are also // available under terms different than the General Public License. (e.g. they // do not require you to accompany any image (FPGA or ASIC) using the JESD204 // core with any corresponding source code.) For these alternate terms you must // purchase a license from Analog Devices Technology Licensing Office. Users // interested in such a license should contact jesd204-licensing@analog.com for // more information. This commercial license is sub-licensable (if you purchase // chips from Analog Devices, incorporate them into your PCB level product, and // purchase a JESD204 license, end users of your product will also have a // license to use this core in a commercial setting without releasing their // source code). // // In addition, we kindly ask you to acknowledge ADI in any program, application // or publication in which you use this JESD204 HDL core. (You are not required // to do so; it is up to your common sense to decide whether you want to comply // with this request or not.) For general publications, we suggest referencing : // “The design and implementation of the JESD204 HDL Core used in this project // is copyright © 2016-2017, Analog Devices, Inc.” // `timescale 1ns/100ps module jesd204_tx_ctrl #( parameter NUM_LANES = 1, parameter NUM_LINKS = 1, parameter DATA_PATH_WIDTH = 4 ) ( input clk, input reset, input [NUM_LINKS-1:0] sync, input lmfc_edge, input [DATA_PATH_WIDTH-1:0] somf, input [DATA_PATH_WIDTH-1:0] somf_early2, input [DATA_PATH_WIDTH-1:0] eomf, output reg [NUM_LANES-1:0] lane_cgs_enable, output reg eof_reset, output reg tx_ready, output tx_ready_nx, output tx_next_mf_ready, output reg [DATA_PATH_WIDTH*8*NUM_LANES-1:0] ilas_data, output reg [DATA_PATH_WIDTH*NUM_LANES-1:0] ilas_charisk, output reg [1:0] ilas_config_addr, output reg ilas_config_rd, input [DATA_PATH_WIDTH*8*NUM_LANES-1:0] ilas_config_data, input [NUM_LANES-1:0] cfg_lanes_disable, input [NUM_LINKS-1:0] cfg_links_disable, input cfg_continuous_cgs, input cfg_continuous_ilas, input cfg_skip_ilas, input [7:0] cfg_mframes_per_ilas, input [9:0] cfg_octets_per_multiframe, input ctrl_manual_sync_request, output [NUM_LINKS-1:0] status_sync, output reg [1:0] status_state ); localparam ILAS_DATA_LENGTH = (DATA_PATH_WIDTH == 4) ? 4 : 2; localparam ILAS_COUNTER_WIDTH = (DATA_PATH_WIDTH == 4) ? 6 : 5; localparam DPW_LOG2 = DATA_PATH_WIDTH == 8 ? 3 : DATA_PATH_WIDTH == 4 ? 2 : 1; localparam BEATS_PER_MF_WIDTH = 10-DPW_LOG2; // For DATA_PATH_WIDTH = 8, special case if F*K%8=4 // Multiframe boundaries can occur in the middle of a beat // jesd204_lmfc will assert lmfc_edge once per two LMFC periods // cfg_mframes_per_ilas must be even wire [BEATS_PER_MF_WIDTH-1:0] cfg_beats_per_multiframe = cfg_octets_per_multiframe[9:DPW_LOG2]; wire octets_per_mf_4_mod_8 = (DATA_PATH_WIDTH == 8) && ~cfg_octets_per_multiframe[2]; wire [7:0] cfg_lmfc_per_ilas = octets_per_mf_4_mod_8 ? cfg_mframes_per_ilas/2 : cfg_mframes_per_ilas; reg lmfc_edge_d1 = 1'b0; reg lmfc_edge_d2 = 1'b0; reg eof_reset_d; reg ilas_reset = 1'b1; reg ilas_data_reset = 1'b1; reg sync_request = 1'b0; reg sync_request_received = 1'b0; reg last_ilas_mframe = 1'b0; reg [7:0] mframe_counter = 'h00; reg [ILAS_COUNTER_WIDTH-1:0] ilas_counter = 'h00; wire ilas_config_rd_start; reg ilas_config_rd_d1 = 1'b1; reg cgs_enable = 1'b1; wire [DATA_PATH_WIDTH*8-1:0] ilas_default_data; wire [NUM_LINKS-1:0] status_sync_masked; genvar ii; genvar jj; sync_bits #( .NUM_OF_BITS (NUM_LINKS)) i_cdc_sync ( .in_bits(sync), .out_clk(clk), .out_resetn(1'b1), .out_bits(status_sync) ); assign status_sync_masked = status_sync | cfg_links_disable; always @(posedge clk) begin if (reset == 1'b1) begin sync_request <= {NUM_LINKS{1'b0}}; end else begin /* TODO: SYNC must be asserted at least 4 frames before interpreted as a * sync request and the /K28.5/ symbol generation has lasted for at * least 1 frame + 9 octets */ if (cfg_continuous_cgs == 1'b1) begin sync_request <= 1'b1; end else begin sync_request <= ~(&status_sync_masked) | ctrl_manual_sync_request; end end end always @(posedge clk) begin if (sync_request == 1'b0 && sync_request_received == 1'b1) begin lmfc_edge_d1 <= lmfc_edge; lmfc_edge_d2 <= lmfc_edge_d1; end else begin lmfc_edge_d1 <= 1'b0; lmfc_edge_d2 <= 1'b0; end end always @(posedge clk) begin if (reset == 1'b1) begin sync_request_received <= 1'b0; end else if (sync_request == 1'b1) begin sync_request_received <= 1'b1; end end always @(posedge clk) begin if (cfg_skip_ilas == 1'b1 || mframe_counter == cfg_lmfc_per_ilas) begin last_ilas_mframe <= 1'b1; end else begin last_ilas_mframe <= 1'b0; end end always @(*) begin if (sync_request == 1'b1 || reset == 1'b1) begin eof_reset = 1'b1; end else if (lmfc_edge == 1'b1 && sync_request_received == 1'b1) begin eof_reset = 1'b0; end else begin eof_reset = eof_reset_d; end end always @(posedge clk) begin eof_reset_d <= eof_reset; end localparam STATE_WAIT = 2'b00; localparam STATE_CGS = 2'b01; localparam STATE_ILAS = 2'b10; localparam STATE_DATA = 2'b11; /* Timeline * * #1 lmfc_edge == 1, ilas_reset update * #3 {lane_,}cgs_enable, tx_ready update * * One multi-frame should at least be 3 clock cycles (TBD 64-bit data path) */ always @(posedge clk) begin if (sync_request == 1'b1 || reset == 1'b1) begin cgs_enable <= 1'b1; lane_cgs_enable <= {NUM_LANES{1'b1}}; tx_ready <= 1'b0; ilas_reset <= 1'b1; ilas_data_reset <= 1'b1; if (sync_request_received == 1'b0) begin status_state <= STATE_WAIT; end else begin status_state <= STATE_CGS; end end else if (sync_request_received == 1'b1) begin if (lmfc_edge == 1'b1 && last_ilas_mframe == 1'b1) begin ilas_reset <= 1'b1; status_state <= STATE_DATA; end else if (lmfc_edge_d1 == 1'b1 && (cfg_continuous_ilas == 1'b1 || cgs_enable == 1'b1)) begin ilas_reset <= 1'b0; status_state <= STATE_ILAS; end if (lmfc_edge_d1 == 1'b1) begin if (last_ilas_mframe == 1'b1 && cfg_continuous_ilas == 1'b0) begin ilas_data_reset <= 1'b1; end else if (cgs_enable == 1'b1) begin ilas_data_reset <= 1'b0; end end if (lmfc_edge_d2 == 1'b1) begin lane_cgs_enable <= cfg_lanes_disable; cgs_enable <= 1'b0; if (last_ilas_mframe == 1'b1 && cfg_continuous_ilas == 1'b0) begin tx_ready <= 1'b1; end end end end assign tx_next_mf_ready = sync_request_received & last_ilas_mframe & ~cfg_continuous_ilas; assign tx_ready_nx = tx_ready | (tx_next_mf_ready & lmfc_edge_d2); always @(posedge clk) begin if (ilas_reset == 1'b1) begin mframe_counter <= 'h00; end else if (lmfc_edge_d1 == 1'b1) begin mframe_counter <= mframe_counter + 1'b1; end end always @(posedge clk) begin if (ilas_reset == 1'b1) begin ilas_config_rd <= 1'b0; end else if (ilas_config_rd_start == 1'b1) begin ilas_config_rd <= 1'b1; end else if (ilas_config_addr == (ILAS_DATA_LENGTH-1)) begin ilas_config_rd <= 1'b0; end ilas_config_rd_d1 <= ilas_config_rd; end always @(posedge clk) begin if (ilas_config_rd == 1'b0) begin ilas_config_addr <= 'h00; end else begin ilas_config_addr <= ilas_config_addr + 1'b1; end end always @(posedge clk) begin if (ilas_reset == 1'b1) begin ilas_counter <= 'h00; end else begin ilas_counter <= ilas_counter + 1'b1; end end generate for(ii = 0; ii < DATA_PATH_WIDTH; ii=ii+1) begin : gen_default_data wire [(8-ILAS_COUNTER_WIDTH)-1:0] ii_sig = ii; assign ilas_default_data[(ii*8)+7:ii*8] = {ilas_counter, ii_sig}; end endgenerate generate if(DATA_PATH_WIDTH == 4) begin : gen_dp4 assign ilas_config_rd_start = mframe_counter == 'h00 && somf_early2[0]; always @(posedge clk) begin if (ilas_data_reset == 1'b1) begin ilas_data <= {NUM_LANES{32'h00}}; ilas_charisk <= {NUM_LANES{4'b0000}}; end else begin if (ilas_config_rd_d1 == 1'b1) begin case (ilas_config_addr) 2'h1: begin ilas_data <= (ilas_config_data & {NUM_LANES{32'hffff0000}}) | {NUM_LANES{16'h00,8'h9c,8'h1c}}; // /Q/ /R/ ilas_charisk <= {NUM_LANES{4'b0011}}; end default: begin ilas_data <= ilas_config_data; ilas_charisk <= {NUM_LANES{4'b0000}}; end endcase end else if (lmfc_edge_d2 == 1'b1) begin ilas_data <= {NUM_LANES{ilas_default_data[31:8],8'h1c}}; // /R/ ilas_charisk <= {NUM_LANES{4'b0001}}; end else if (lmfc_edge_d1 == 1'b1) begin ilas_data <= {NUM_LANES{8'h7c,ilas_default_data[23:0]}}; // /A/ ilas_charisk <= {NUM_LANES{4'b1000}}; end else begin ilas_data <= {NUM_LANES{ilas_default_data}}; ilas_charisk <= {NUM_LANES{4'b0000}}; end end end end else if(DATA_PATH_WIDTH == 8) begin : gen_dp8 reg [63:0] ilas_config_data_d[NUM_LANES-1:0]; reg ilas_config_rd_d2 = 1'b0; always @(posedge clk) begin ilas_config_rd_d2 <= ilas_config_rd_d1; end for(jj = 0; jj < NUM_LANES; jj = jj + 1) begin : gen_dp8_lane assign ilas_config_rd_start = (mframe_counter == 'h00) && (octets_per_mf_4_mod_8 ? somf_early2[4] : somf_early2[0]); always @(posedge clk) begin ilas_config_data_d[jj] <= {32'b0, ilas_config_data[(jj*64)+32+:32]}; end for(ii = 0; ii < DATA_PATH_WIDTH; ii=ii+1) begin : gen_ilas_data always @(posedge clk) begin if (ilas_data_reset) begin ilas_data[(jj*64)+(ii*8)+:8] <= 8'h00; ilas_charisk[(jj*8)+ii] <= 1'b0; end else begin if(somf[ii]) begin ilas_data[(jj*64)+(ii*8)+:8] <= 8'h1c; // /R/ ilas_charisk[(jj*8)+ii] <= 1'b1; end else if(eomf[ii]) begin ilas_data[(jj*64)+(ii*8)+:8] <= 8'h7c; // /A/ ilas_charisk[(jj*8)+ii] <= 1'b1; end else if (ilas_config_rd_d1 && (ilas_config_addr == 2'h1) && ((octets_per_mf_4_mod_8 && (ii == 5)) || (!octets_per_mf_4_mod_8 && (ii == 1)))) begin ilas_data[(jj*64)+(ii*8)+:8] <= 8'h9c; // /Q/ ilas_charisk[(jj*8)+ii] <= 1'b1; end else if (octets_per_mf_4_mod_8 && ilas_config_rd_d2 && (ii < 4)) begin ilas_data[(jj*64)+(ii*8)+:8] <= ilas_config_data_d[jj][ii*8+:8]; ilas_charisk[(jj*8)+ii] <= 1'b0; end else if (octets_per_mf_4_mod_8 && ilas_config_rd_d1 && (ii >= 4)) begin ilas_data[(jj*64)+(ii*8)+:8] <= ilas_config_data[(jj*64)+((ii-4)*8)+:8]; ilas_charisk[(jj*8)+ii] <= 1'b0; end else if (!octets_per_mf_4_mod_8 && ilas_config_rd_d1) begin ilas_data[(jj*64)+(ii*8)+:8] <= ilas_config_data[(jj*64)+(ii*8)+:8]; ilas_charisk[(jj*8)+ii] <= 1'b0; end else begin ilas_data[(jj*64)+(ii*8)+:8] <= ilas_default_data[ii*8+:8]; ilas_charisk[(jj*8)+ii] <= 1'b0; end end end end end end endgenerate endmodule