// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsabilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_dacfifo_rd #( parameter AXI_DATA_WIDTH = 512, parameter AXI_SIZE = 2, parameter AXI_LENGTH = 15, parameter AXI_ADDRESS = 32'h00000000) ( // xfer last for read/write synchronization input axi_xfer_req, input [31:0] axi_last_raddr, input [ 7:0] axi_last_beats, // axi read address and read data channels input axi_clk, input axi_resetn, output reg axi_arvalid, output [ 3:0] axi_arid, output [ 1:0] axi_arburst, output axi_arlock, output [ 3:0] axi_arcache, output [ 2:0] axi_arprot, output [ 3:0] axi_arqos, output [ 3:0] axi_aruser, output [ 7:0] axi_arlen, output [ 2:0] axi_arsize, output reg [31:0] axi_araddr, input axi_arready, input axi_rvalid, input [ 3:0] axi_rid, input [ 3:0] axi_ruser, input [ 1:0] axi_rresp, input axi_rlast, input [(AXI_DATA_WIDTH-1):0] axi_rdata, output reg axi_rready, // axi status output reg axi_rerror, // fifo interface output reg axi_dvalid, output reg [(AXI_DATA_WIDTH-1):0] axi_ddata, input axi_dready, output reg axi_dlast); localparam AXI_BYTE_WIDTH = AXI_DATA_WIDTH/8; localparam AXI_AWINCR = (AXI_LENGTH + 1) * AXI_BYTE_WIDTH; // internal registers reg axi_rnext = 1'b0; reg axi_ractive = 1'b0; reg [ 31:0] axi_araddr_prev = 32'b0; reg [ 1:0] axi_xfer_req_m = 2'b0; reg [ 7:0] axi_last_beats_cntr = 8'b0; // internal signals wire axi_ready_s; wire axi_xfer_req_init; wire axi_dvalid_s; wire axi_dlast_s; wire [ 8:0] axi_last_beats_s; assign axi_ready_s = (~axi_arvalid | axi_arready) & axi_dready; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_rnext <= 1'b0; axi_ractive <= 1'b0; axi_xfer_req_m <= 2'b0; end else begin if (axi_ractive == 1'b1) begin axi_rnext <= 1'b0; if ((axi_rvalid == 1'b1) && (axi_rlast == 1'b1)) begin axi_ractive <= 1'b0; end end else if ((axi_ready_s == 1'b1)) begin axi_rnext <= axi_xfer_req; axi_ractive <= axi_xfer_req; end axi_xfer_req_m <= {axi_xfer_req_m[0], axi_xfer_req}; end end assign axi_xfer_req_init = axi_xfer_req_m[0] & ~axi_xfer_req_m[1]; always @(posedge axi_clk) begin if ((axi_resetn == 1'b0) || (axi_xfer_req == 1'b0)) begin axi_last_beats_cntr <= 0; end else begin if ((axi_rready == 1'b1) && (axi_rvalid == 1'b1)) begin axi_last_beats_cntr <= (axi_rlast == 1'b1) ? 0 : axi_last_beats_cntr + 1; end end end // address channel assign axi_arid = 4'b0000; assign axi_arburst = 2'b01; assign axi_arlock = 1'b0; assign axi_arcache = 4'b0010; assign axi_arprot = 3'b000; assign axi_arqos = 4'b0000; assign axi_aruser = 4'b0001; assign axi_arlen = AXI_LENGTH; assign axi_arsize = AXI_SIZE; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_arvalid <= 'd0; axi_araddr <= AXI_ADDRESS; axi_araddr_prev <= AXI_ADDRESS; end else begin if (axi_arvalid == 1'b1) begin if (axi_arready == 1'b1) begin axi_arvalid <= 1'b0; end end else begin if (axi_rnext == 1'b1) begin axi_arvalid <= 1'b1; end end if ((axi_xfer_req == 1'b1) && (axi_arvalid == 1'b1) && (axi_arready == 1'b1)) begin axi_araddr <= (axi_araddr >= axi_last_raddr) ? AXI_ADDRESS : axi_araddr + AXI_AWINCR; axi_araddr_prev <= axi_araddr; end end end // read data channel assign axi_last_beats_s = {1'b0, axi_last_beats} - 1; assign axi_dvalid_s = ((axi_last_beats_cntr > axi_last_beats_s) && (axi_araddr_prev == axi_last_raddr)) ? 0 : axi_rvalid & axi_rready; assign axi_dlast_s = (axi_araddr_prev == axi_last_raddr) ? 1 : 0; always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_ddata <= 'd0; axi_rready <= 1'b0; axi_dvalid <= 1'b0; end else begin axi_ddata <= axi_rdata; axi_dvalid <= axi_dvalid_s; axi_dlast <= axi_dlast_s; if (axi_xfer_req == 1'b1) begin axi_rready <= axi_rvalid; end end end always @(posedge axi_clk) begin if (axi_resetn == 1'b0) begin axi_rerror <= 'd0; end else begin axi_rerror <= axi_rvalid & axi_rresp[1]; end end endmodule // *************************************************************************** // ***************************************************************************