// *************************************************************************** // *************************************************************************** // Copyright 2013(c) Analog Devices, Inc. // Author: Lars-Peter Clausen // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** module fifo_address_gray_pipelined ( input m_axis_aclk, input m_axis_aresetn, input m_axis_ready, output reg m_axis_valid, output [C_ADDRESS_WIDTH-1:0] m_axis_raddr_next, output [C_ADDRESS_WIDTH-1:0] m_axis_raddr, output reg [C_ADDRESS_WIDTH:0] m_axis_level, input s_axis_aclk, input s_axis_aresetn, output reg s_axis_ready, input s_axis_valid, output reg s_axis_empty, output [C_ADDRESS_WIDTH-1:0] s_axis_waddr, output reg [C_ADDRESS_WIDTH:0] s_axis_room ); parameter C_ADDRESS_WIDTH = 4; reg [C_ADDRESS_WIDTH:0] _s_axis_waddr = 'h00; reg [C_ADDRESS_WIDTH:0] _s_axis_waddr_next; wire [C_ADDRESS_WIDTH:0] _s_axis_raddr; reg [C_ADDRESS_WIDTH:0] _m_axis_raddr = 'h00; reg [C_ADDRESS_WIDTH:0] _m_axis_raddr_next; wire [C_ADDRESS_WIDTH:0] _m_axis_waddr; assign s_axis_waddr = _s_axis_waddr[C_ADDRESS_WIDTH-1:0]; assign m_axis_raddr_next = _m_axis_raddr_next[C_ADDRESS_WIDTH-1:0]; assign m_axis_raddr = _m_axis_raddr[C_ADDRESS_WIDTH-1:0]; always @(*) begin if (s_axis_ready && s_axis_valid) _s_axis_waddr_next <= _s_axis_waddr + 1; else _s_axis_waddr_next <= _s_axis_waddr; end always @(posedge s_axis_aclk) begin if (s_axis_aresetn == 1'b0) begin _s_axis_waddr <= 'h00; end else begin _s_axis_waddr <= _s_axis_waddr_next; end end always @(*) begin if (m_axis_ready && m_axis_valid) _m_axis_raddr_next <= _m_axis_raddr + 1; else _m_axis_raddr_next <= _m_axis_raddr; end always @(posedge m_axis_aclk) begin if (m_axis_aresetn == 1'b0) begin _m_axis_raddr <= 'h00; end else begin _m_axis_raddr <= _m_axis_raddr_next; end end sync_gray #( .DATA_WIDTH(C_ADDRESS_WIDTH + 1) ) i_waddr_sync ( .in_clk(s_axis_aclk), .in_resetn(s_axis_aresetn), .out_clk(m_axis_aclk), .out_resetn(m_axis_aresetn), .in_count(_s_axis_waddr), .out_count(_m_axis_waddr) ); sync_gray #( .DATA_WIDTH(C_ADDRESS_WIDTH + 1) ) i_raddr_sync ( .in_clk(m_axis_aclk), .in_resetn(m_axis_aresetn), .out_clk(s_axis_aclk), .out_resetn(s_axis_aresetn), .in_count(_m_axis_raddr), .out_count(_s_axis_raddr) ); always @(posedge s_axis_aclk) begin if (s_axis_aresetn == 1'b0) begin s_axis_ready <= 1'b1; s_axis_empty <= 1'b1; s_axis_room <= 2**C_ADDRESS_WIDTH; end else begin s_axis_ready <= (_s_axis_raddr[C_ADDRESS_WIDTH] == _s_axis_waddr_next[C_ADDRESS_WIDTH] || _s_axis_raddr[C_ADDRESS_WIDTH-1:0] != _s_axis_waddr_next[C_ADDRESS_WIDTH-1:0]); s_axis_empty <= _s_axis_raddr == _s_axis_waddr_next; s_axis_room <= _s_axis_raddr - _s_axis_waddr_next + 2**C_ADDRESS_WIDTH; end end always @(posedge m_axis_aclk) begin if (s_axis_aresetn == 1'b0) begin m_axis_valid <= 1'b0; m_axis_level <= 'h00; end else begin m_axis_valid <= _m_axis_waddr != _m_axis_raddr_next; m_axis_level <= _m_axis_waddr - _m_axis_raddr_next; end end endmodule