// *************************************************************************** // *************************************************************************** // Copyright 2021 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** // This is the dac physical interface (drives samples from the low speed clock to the // dac clock domain. `timescale 1ns/100ps module axi_ad9783_if #( parameter FPGA_TECHNOLOGY = 0 ) ( // dac interface input dac_clk_in_p, input dac_clk_in_n, output dac_clk_out_p, output dac_clk_out_n, output [15:0] dac_data_out_p, output [15:0] dac_data_out_n, // internal resets and clocks input dac_rst, output dac_div_clk, output reg dac_status, // data interface input [15:0] dac_data_a0, input [15:0] dac_data_a1, input [15:0] dac_data_a2, input [15:0] dac_data_a3, input [15:0] dac_data_b0, input [15:0] dac_data_b1, input [15:0] dac_data_b2, input [15:0] dac_data_b3 ); // internal registers // internal signals wire dac_clk_in_s; wire dac_div_clk_s; wire dac_clk_s; // dac status always @(posedge dac_div_clk) begin if (dac_rst == 1'b1) begin dac_status <= 1'd0; end else begin dac_status <= 1'd1; end end // dac data output serdes(s) & buffers ad_serdes_out #( .DDR_OR_SDR_N(1), .DATA_WIDTH(16), .SERDES_FACTOR(8), .FPGA_TECHNOLOGY (FPGA_TECHNOLOGY) ) i_serdes_out_data ( .rst (dac_rst), .clk (dac_clk_s), .div_clk (dac_div_clk), .loaden (1'b0), .data_oe (1'b1), .data_s0 (dac_data_a0), .data_s1 (dac_data_b0), .data_s2 (dac_data_a1), .data_s3 (dac_data_b1), .data_s4 (dac_data_a2), .data_s5 (dac_data_b2), .data_s6 (dac_data_a3), .data_s7 (dac_data_b3), .data_out_se (), .data_out_p (dac_data_out_p), .data_out_n (dac_data_out_n)); // dac clock output serdes & buffer ad_serdes_out #( .DDR_OR_SDR_N(1), .DATA_WIDTH(1), .SERDES_FACTOR(8), .FPGA_TECHNOLOGY (FPGA_TECHNOLOGY) ) i_serdes_out_clk ( .rst (dac_rst), .clk (dac_clk_s), .div_clk (dac_div_clk), .loaden (1'b0), .data_oe (1'b1), .data_s0 (1'b1), .data_s1 (1'b0), .data_s2 (1'b1), .data_s3 (1'b0), .data_s4 (1'b1), .data_s5 (1'b0), .data_s6 (1'b1), .data_s7 (1'b0), .data_out_se (), .data_out_p (dac_clk_out_p), .data_out_n (dac_clk_out_n)); // dac clock input buffers IBUFGDS i_dac_clk_in_ibuf ( .I (dac_clk_in_p), .IB (dac_clk_in_n), .O (dac_clk_s)); BUFGCE_DIV #( .BUFGCE_DIVIDE (4), .IS_CE_INVERTED (1'b0), .IS_CLR_INVERTED (1'b0), .IS_I_INVERTED (1'b0) ) i_dac_div_clk_rbuf ( .O (dac_div_clk_s), .CE (1'b1), .CLR (1'b0), .I (dac_clk_s)); BUFG i_dac_div_clk_gbuf ( .I (dac_div_clk_s), .O (dac_div_clk)); endmodule