// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** // this module is a helper core for linux. as much as possible, try not to use this core. // best thing to do is look at no-os and implement a proper frame work in linux. // most controls are scattered around other cores, here we collect them to provide a common access. `timescale 1ns/100ps module axi_fmcadc5_sync #( parameter integer ID = 0, parameter [ 7:0] FPGA_TECHNOLOGY = 0, parameter [ 7:0] FPGA_FAMILY = 0, parameter [ 7:0] SPEED_GRADE = 0, parameter [ 7:0] DEV_PACKAGE = 0, parameter DELAY_REFCLK_FREQUENCY = 200 ) ( // receive interface input rx_clk, output rx_sysref, input rx_sync_0, input rx_sync_1, output rx_sysref_p, output rx_sysref_n, output rx_sync_0_p, output rx_sync_0_n, output rx_sync_1_p, output rx_sync_1_n, input rx_enable_0, input [255:0] rx_data_0, input rx_enable_1, input [255:0] rx_data_1, output rx_enable, output [511:0] rx_data, // calibration signal output vcal, // switching regulator clocks output psync, // delay interface input delay_rst, input delay_clk, // spi override input [ 7:0] spi_csn_o, input spi_clk_o, input spi_sdo_o, output [ 7:0] spi_csn, output spi_clk, output spi_mosi, input spi_miso, // axi interface input s_axi_aclk, input s_axi_aresetn, input s_axi_awvalid, input [ 15:0] s_axi_awaddr, output s_axi_awready, input s_axi_wvalid, input [ 31:0] s_axi_wdata, input [ 3:0] s_axi_wstrb, output s_axi_wready, output s_axi_bvalid, output [ 1:0] s_axi_bresp, input s_axi_bready, input s_axi_arvalid, input [ 15:0] s_axi_araddr, output s_axi_arready, output s_axi_rvalid, output [ 31:0] s_axi_rdata, output [ 1:0] s_axi_rresp, input s_axi_rready, input [ 2:0] s_axi_awprot, input [ 2:0] s_axi_arprot ); // version localparam [31:0] PCORE_VERSION = 32'h00040063; // internal registers reg [ 7:0] up_psync_count = 'd0; reg up_psync = 'd0; reg up_cal_done_t_m1 = 'd0; reg up_cal_done_t_m2 = 'd0; reg up_cal_done_t_m3 = 'd0; reg [ 15:0] up_cal_max_0 = 'd0; reg [ 15:0] up_cal_min_0 = 'd0; reg [ 15:0] up_cal_max_1 = 'd0; reg [ 15:0] up_cal_min_1 = 'd0; reg up_cal_enable = 'd0; reg up_cor_enable = 'd0; reg up_cor_enable_t = 'd0; reg [ 15:0] up_cor_scale_0 = 'd0; reg [ 15:0] up_cor_offset_0 = 'd0; reg [ 15:0] up_cor_scale_1 = 'd0; reg [ 15:0] up_cor_offset_1 = 'd0; reg [ 7:0] up_vcal_8 = 'd0; reg up_vcal = 'd0; reg [ 7:0] up_vcal_cnt = 'd0; reg up_vcal_enable = 'd0; reg up_sysref_ack_t_m1 = 'd0; reg up_sysref_ack_t_m2 = 'd0; reg up_sysref_ack_t_m3 = 'd0; reg up_sysref_control_t = 'd0; reg [ 1:0] up_sysref_mode_e = 'd0; reg up_sysref_mode_i = 'd0; reg up_sysref_req_t = 'd0; reg up_sysref_status = 'd0; reg up_sync_control_t = 'd0; reg up_sync_mode = 'd0; reg up_sync_disable_1 = 'd0; reg up_sync_disable_0 = 'd0; reg up_sync_status_t_m1 = 'd0; reg up_sync_status_t_m2 = 'd0; reg up_sync_status_t_m3 = 'd0; reg up_sync_status_1 = 'd0; reg up_sync_status_0 = 'd0; reg up_delay_ld = 'd0; reg [ 4:0] up_delay_wdata = 'd0; reg [ 7:0] up_spi_csn_int = 'd0; reg up_spi_clk_int = 'd0; reg up_spi_mosi_int = 'd0; reg up_spi_gnt = 'd0; reg up_spi_req = 'd0; reg [ 7:0] up_spi_csn = 'd0; reg [ 5:0] up_spi_cnt = 'd0; reg [ 31:0] up_spi_clk_32 = 'd0; reg [ 31:0] up_spi_out_32 = 'd0; reg [ 31:0] up_spi_in_32 = 'd0; reg [ 7:0] up_spi_out = 'd0; reg [ 31:0] up_scratch = 'd0; reg [ 31:0] up_timer = 'd0; reg up_wack = 'd0; reg up_rack = 'd0; reg [ 31:0] up_rdata = 'd0; reg rx_cal_enable_m1 = 'd0; reg rx_cal_enable = 'd0; reg rx_cor_enable_t_m1 = 'd0; reg rx_cor_enable_t_m2 = 'd0; reg rx_cor_enable_t_m3 = 'd0; reg rx_cor_enable = 'd0; reg [ 15:0] rx_cor_scale_0 = 'd0; reg [ 15:0] rx_cor_offset_0 = 'd0; reg [ 15:0] rx_cor_scale_1 = 'd0; reg [ 15:0] rx_cor_offset_1 = 'd0; reg [ 15:0] rx_cor_scale_d_0 = 'd0; reg [ 15:0] rx_cor_offset_d_0 = 'd0; reg [ 15:0] rx_cor_scale_d_1 = 'd0; reg [ 15:0] rx_cor_offset_d_1 = 'd0; reg [ 7:0] rx_sysref_cnt = 'd0; reg rx_sysref_control_t_m1 = 'd0; reg rx_sysref_control_t_m2 = 'd0; reg rx_sysref_control_t_m3 = 'd0; reg [ 1:0] rx_sysref_mode_e = 'd0; reg rx_sysref_mode_i = 'd0; reg rx_sysref_req_t_m1 = 'd0; reg rx_sysref_req_t_m2 = 'd0; reg rx_sysref_req_t_m3 = 'd0; reg rx_sysref_req = 'd0; reg rx_sysref_e = 'd0; reg rx_sysref_i = 'd0; reg rx_sysref_ack_t = 'd0; reg rx_sysref_enb_e = 'd0; reg rx_sysref_enb_i = 'd0; reg rx_sync_control_t_m1 = 'd0; reg rx_sync_control_t_m2 = 'd0; reg rx_sync_control_t_m3 = 'd0; reg rx_sync_mode = 'd0; reg rx_sync_disable_1 = 'd0; reg rx_sync_disable_0 = 'd0; reg rx_sync_out_1 = 'd0; reg rx_sync_out_0 = 'd0; reg [ 7:0] rx_sync_cnt = 'd0; reg rx_sync_hold_1 = 'd0; reg rx_sync_hold_0 = 'd0; reg rx_sync_status_t = 'd0; reg rx_sync_status_1 = 'd0; reg rx_sync_status_0 = 'd0; // internal signals wire up_cal_done_t_s; wire up_sysref_ack_t_s; wire up_sync_status_t_s; wire up_spi_gnt_s; wire [ 31:0] up_spi_out_32_s; wire [ 7:0] up_spi_in_s; wire rx_cor_enable_t_s; wire rx_cal_done_t_s; wire [ 15:0] rx_cal_max_0_s; wire [ 15:0] rx_cal_min_0_s; wire [ 15:0] rx_cal_max_1_s; wire [ 15:0] rx_cal_min_1_s; wire rx_sysref_control_t_s; wire rx_sysref_req_t_s; wire rx_sysref_enb_e_s; wire rx_sync_control_t_s; wire [ 4:0] up_delay_rdata_s; wire up_delay_locked_s; wire up_wreq_s; wire [ 13:0] up_waddr_s; wire [ 31:0] up_wdata_s; wire up_rreq_s; wire [ 13:0] up_raddr_s; wire up_rstn; wire up_clk; // signal name changes assign up_rstn = s_axi_aresetn; assign up_clk = s_axi_aclk; // switching regulator clocks (~602K) assign psync = up_psync; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_psync_count <= 7'd0; up_psync <= 1'b0; end else begin if (up_psync_count >= 7'h52) begin up_psync_count <= 7'd0; end else begin up_psync_count <= up_psync_count + 1'b1; end if (up_psync_count >= 7'h4f) begin up_psync <= ~up_psync; end end end // calibration (offset & gain only) always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_cal_done_t_m1 <= 1'd0; up_cal_done_t_m2 <= 1'd0; up_cal_done_t_m3 <= 1'd0; end else begin up_cal_done_t_m1 <= rx_cal_done_t_s; up_cal_done_t_m2 <= up_cal_done_t_m1; up_cal_done_t_m3 <= up_cal_done_t_m2; end end assign up_cal_done_t_s = up_cal_done_t_m3 ^ up_cal_done_t_m2; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_cal_max_0 <= 16'd0; up_cal_min_0 <= 16'd0; up_cal_max_1 <= 16'd0; up_cal_min_1 <= 16'd0; end else begin if (up_cal_done_t_s == 1'b1) begin up_cal_max_0 <= rx_cal_max_0_s; up_cal_min_0 <= rx_cal_min_0_s; up_cal_max_1 <= rx_cal_max_1_s; up_cal_min_1 <= rx_cal_min_1_s; end end end always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_cal_enable <= 1'd0; up_cor_enable <= 1'd0; up_cor_enable_t <= 1'd0; up_cor_scale_0 <= 16'd0; up_cor_offset_0 <= 16'd0; up_cor_scale_1 <= 16'd0; up_cor_offset_1 <= 16'd0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0060)) begin up_cal_enable <= up_wdata_s[0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0061)) begin up_cor_enable <= up_wdata_s[0]; up_cor_enable_t <= ~up_cor_enable_t; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0068)) begin up_cor_scale_0 <= up_wdata_s[15:0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0069)) begin up_cor_offset_0 <= up_wdata_s[15:0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h006a)) begin up_cor_scale_1 <= up_wdata_s[15:0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h006b)) begin up_cor_offset_1 <= up_wdata_s[15:0]; end end end // calibration signal register(s) assign vcal = up_vcal; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_vcal_8 <= 8'd0; up_vcal <= 1'd0; up_vcal_cnt <= 8'd0; up_vcal_enable <= 1'd0; end else begin if (up_vcal_8 >= up_vcal_cnt) begin up_vcal_8 <= 8'd0; up_vcal <= ~up_vcal & up_vcal_enable; end else begin up_vcal_8 <= up_vcal_8 + 1'b1; up_vcal <= up_vcal; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0050)) begin up_vcal_cnt <= up_wdata_s[7:0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0051)) begin up_vcal_enable <= up_wdata_s[0]; end end end // sysref register(s) assign up_sysref_ack_t_s = up_sysref_ack_t_m3 ^ up_sysref_ack_t_m2; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_sysref_ack_t_m1 <= 1'd0; up_sysref_ack_t_m2 <= 1'd0; up_sysref_ack_t_m3 <= 1'd0; end else begin up_sysref_ack_t_m1 <= rx_sysref_ack_t; up_sysref_ack_t_m2 <= up_sysref_ack_t_m1; up_sysref_ack_t_m3 <= up_sysref_ack_t_m2; end end always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_sysref_control_t <= 1'd0; up_sysref_mode_e <= 2'd0; up_sysref_mode_i <= 1'd0; up_sysref_req_t <= 1'd0; up_sysref_status <= 1'b0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0040)) begin up_sysref_control_t <= ~up_sysref_control_t; up_sysref_mode_e <= up_wdata_s[5:4]; up_sysref_mode_i <= up_wdata_s[0]; end if (up_sysref_status == 1'b1) begin if (up_sysref_ack_t_s == 1'b1) begin up_sysref_req_t <= up_sysref_req_t; up_sysref_status <= 1'b0; end end else if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0041)) begin if (up_wdata_s[0] == 1'b1) begin up_sysref_req_t <= ~up_sysref_req_t; up_sysref_status <= 1'b1; end end end end // sync register(s) always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_sync_control_t <= 1'd0; up_sync_mode <= 1'd0; up_sync_disable_1 <= 1'd0; up_sync_disable_0 <= 1'd0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0030)) begin up_sync_control_t <= ~up_sync_control_t; up_sync_mode <= up_wdata_s[2]; up_sync_disable_1 <= up_wdata_s[1]; up_sync_disable_0 <= up_wdata_s[0]; end end end // simple current status (no persistence) assign up_sync_status_t_s = up_sync_status_t_m3 ^ up_sync_status_t_m2; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_sync_status_t_m1 <= 1'd0; up_sync_status_t_m2 <= 1'd0; up_sync_status_t_m3 <= 1'd0; up_sync_status_1 <= 1'd0; up_sync_status_0 <= 1'd0; end else begin up_sync_status_t_m1 <= rx_sync_status_t; up_sync_status_t_m2 <= up_sync_status_t_m1; up_sync_status_t_m3 <= up_sync_status_t_m2; if (up_sync_status_t_s == 1'b1) begin up_sync_status_1 <= rx_sync_status_1; up_sync_status_0 <= rx_sync_status_0; end end end // delay register(s) always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_delay_ld <= 1'd0; up_delay_wdata <= 5'd0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0020)) begin up_delay_ld <= 1'b1; end else begin up_delay_ld <= 1'b0; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0020)) begin up_delay_wdata <= up_wdata_s[4:0]; end end end // switching must be glitchless assign spi_csn = up_spi_csn_int; assign spi_clk = up_spi_clk_int; assign spi_mosi = up_spi_mosi_int; always @(negedge up_clk) begin if (up_spi_gnt == 1'b1) begin up_spi_csn_int <= up_spi_csn; up_spi_clk_int <= up_spi_clk_32[31]; up_spi_mosi_int <= up_spi_out_32[31]; end else begin up_spi_csn_int <= spi_csn_o; up_spi_clk_int <= spi_clk_o; up_spi_mosi_int <= spi_sdo_o; end end assign up_spi_gnt_s = (&spi_csn_o) & ~spi_clk_o; always @(posedge up_clk or negedge up_rstn) begin if (up_rstn == 1'b0) begin up_spi_gnt <= 1'd0; end else begin if (up_spi_gnt_s == 1'b1) begin up_spi_gnt <= up_spi_req; end end end // spi data stretching assign up_spi_out_32_s[31:28] = {4{up_wdata_s[7]}}; assign up_spi_out_32_s[27:24] = {4{up_wdata_s[6]}}; assign up_spi_out_32_s[23:20] = {4{up_wdata_s[5]}}; assign up_spi_out_32_s[19:16] = {4{up_wdata_s[4]}}; assign up_spi_out_32_s[15:12] = {4{up_wdata_s[3]}}; assign up_spi_out_32_s[11: 8] = {4{up_wdata_s[2]}}; assign up_spi_out_32_s[ 7: 4] = {4{up_wdata_s[1]}}; assign up_spi_out_32_s[ 3: 0] = {4{up_wdata_s[0]}}; assign up_spi_in_s[7] = up_spi_in_32[28]; assign up_spi_in_s[6] = up_spi_in_32[24]; assign up_spi_in_s[5] = up_spi_in_32[20]; assign up_spi_in_s[4] = up_spi_in_32[16]; assign up_spi_in_s[3] = up_spi_in_32[12]; assign up_spi_in_s[2] = up_spi_in_32[ 8]; assign up_spi_in_s[1] = up_spi_in_32[ 4]; assign up_spi_in_s[0] = up_spi_in_32[ 0]; // spi register(s) always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_spi_req <= 1'd0; up_spi_csn <= {8{1'b1}}; up_spi_cnt <= 6'd0; up_spi_clk_32 <= 32'd0; up_spi_out_32 <= 32'd0; up_spi_in_32 <= 32'd0; up_spi_out <= 8'd0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0010)) begin up_spi_req <= up_wdata_s[0]; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0012)) begin up_spi_csn <= up_wdata_s[7:0]; end if (up_spi_cnt[5] == 1'b1) begin up_spi_cnt <= up_spi_cnt + 1'b1; up_spi_clk_32 <= {up_spi_clk_32[30:0], 1'd0}; up_spi_out_32 <= {up_spi_out_32[30:0], 1'd0}; up_spi_in_32 <= {up_spi_in_32[30:0], spi_miso}; up_spi_out <= up_spi_out; end else if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0013)) begin up_spi_cnt <= 6'h20; up_spi_clk_32 <= {8{4'h6}}; up_spi_out_32 <= up_spi_out_32_s; up_spi_in_32 <= {31'd0, spi_miso}; up_spi_out <= up_wdata_s[7:0]; end end end // scratch register(s) always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_scratch <= 'd0; up_timer <= 'd0; end else begin if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0002)) begin up_scratch <= up_wdata_s; end if ((up_wreq_s == 1'b1) && (up_waddr_s == 14'h0003)) begin up_timer <= up_wdata_s; end else if (up_timer > 0) begin up_timer <= up_timer - 1'b1; end end end // processor read interface always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 0) begin up_wack <= 'd0; up_rack <= 'd0; up_rdata <= 'd0; end else begin up_wack <= up_wreq_s; up_rack <= up_rreq_s; if (up_rreq_s == 1'b1) begin case (up_raddr_s) 14'h0000: up_rdata <= PCORE_VERSION; 14'h0001: up_rdata <= ID; 14'h0002: up_rdata <= up_scratch; 14'h0003: up_rdata <= up_timer; 14'h0007: up_rdata <= {FPGA_TECHNOLOGY,FPGA_FAMILY,SPEED_GRADE,DEV_PACKAGE}; // [8,8,8,8] 14'h0010: up_rdata <= {31'd0, up_spi_req}; 14'h0011: up_rdata <= {31'd0, up_spi_gnt}; 14'h0012: up_rdata <= {24'd0, up_spi_csn}; 14'h0013: up_rdata <= {24'd0, up_spi_out}; 14'h0014: up_rdata <= {24'd0, up_spi_in_s}; 14'h0015: up_rdata <= {31'd0, up_spi_cnt[5]}; 14'h0020: up_rdata <= {27'd0, up_delay_wdata}; 14'h0021: up_rdata <= {27'd0, up_delay_rdata_s}; 14'h0022: up_rdata <= {31'd0, up_delay_locked_s}; 14'h0030: up_rdata <= {29'd0, up_sync_mode, up_sync_disable_1, up_sync_disable_0}; 14'h0031: up_rdata <= {30'd0, up_sync_status_1, up_sync_status_0}; 14'h0040: up_rdata <= {26'd0, up_sysref_mode_e, 3'b0, up_sysref_mode_i}; 14'h0041: up_rdata <= {31'd0, up_sysref_status}; 14'h0050: up_rdata <= {24'd0, up_vcal_cnt}; 14'h0051: up_rdata <= {31'd0, up_vcal_enable}; 14'h0060: up_rdata <= {30'd0, up_cal_enable}; 14'h0061: up_rdata <= {30'd0, up_cor_enable}; 14'h0064: up_rdata <= {16'd0, up_cal_max_0}; 14'h0065: up_rdata <= {16'd0, up_cal_min_0}; 14'h0066: up_rdata <= {16'd0, up_cal_max_1}; 14'h0067: up_rdata <= {16'd0, up_cal_min_1}; 14'h0068: up_rdata <= {16'd0, up_cor_scale_0}; 14'h0069: up_rdata <= {16'd0, up_cor_offset_0}; 14'h006a: up_rdata <= {16'd0, up_cor_scale_1}; 14'h006b: up_rdata <= {16'd0, up_cor_offset_1}; default: up_rdata <= 0; endcase end else begin up_rdata <= 32'd0; end end end // calibration at receive clock always @(posedge rx_clk) begin rx_cal_enable_m1 <= up_cal_enable; rx_cal_enable <= rx_cal_enable_m1; rx_cor_enable_t_m1 <= up_cor_enable_t; rx_cor_enable_t_m2 <= rx_cor_enable_t_m1; rx_cor_enable_t_m3 <= rx_cor_enable_t_m2; end assign rx_cor_enable_t_s = rx_cor_enable_t_m3 ^ rx_cor_enable_t_m2; always @(posedge rx_clk) begin if (rx_cor_enable_t_s == 1'b1) begin rx_cor_enable <= up_cor_enable; rx_cor_scale_0 <= up_cor_scale_0; rx_cor_offset_0 <= up_cor_offset_0; rx_cor_scale_1 <= up_cor_scale_1; rx_cor_offset_1 <= up_cor_offset_1; end end always @(posedge rx_clk) begin if (rx_cor_enable == 1'b0) begin rx_cor_scale_d_0 <= 16'h8000; rx_cor_offset_d_0 <= 16'h0000; rx_cor_scale_d_1 <= 16'h8000; rx_cor_offset_d_1 <= 16'h0000; end else begin rx_cor_scale_d_0 <= rx_cor_scale_0; rx_cor_offset_d_0 <= rx_cor_offset_0; rx_cor_scale_d_1 <= rx_cor_scale_1; rx_cor_offset_d_1 <= rx_cor_offset_1; end end axi_fmcadc5_sync_calcor i_calcor ( .rx_clk (rx_clk), .rx_enable_0 (rx_enable_0), .rx_data_0 (rx_data_0), .rx_enable_1 (rx_enable_1), .rx_data_1 (rx_data_1), .rx_enable (rx_enable), .rx_data (rx_data), .rx_cal_enable (rx_cal_enable), .rx_cal_done_t (rx_cal_done_t_s), .rx_cal_max_0 (rx_cal_max_0_s), .rx_cal_min_0 (rx_cal_min_0_s), .rx_cal_max_1 (rx_cal_max_1_s), .rx_cal_min_1 (rx_cal_min_1_s), .rx_cor_scale_0 (rx_cor_scale_d_0), .rx_cor_offset_0 (rx_cor_offset_d_0), .rx_cor_scale_1 (rx_cor_scale_d_1), .rx_cor_offset_1 (rx_cor_offset_d_1)); // sysref-control at receive clock always @(posedge rx_clk) begin rx_sysref_cnt <= rx_sysref_cnt + 1'b1; end assign rx_sysref_control_t_s = rx_sysref_control_t_m3 ^ rx_sysref_control_t_m2; assign rx_sysref_req_t_s = rx_sysref_req_t_m3 ^ rx_sysref_req_t_m2; always @(posedge rx_clk) begin rx_sysref_control_t_m1 <= up_sysref_control_t; rx_sysref_control_t_m2 <= rx_sysref_control_t_m1; rx_sysref_control_t_m3 <= rx_sysref_control_t_m2; if (rx_sysref_control_t_s == 1'b1) begin rx_sysref_mode_e <= up_sysref_mode_e; rx_sysref_mode_i <= up_sysref_mode_i; end rx_sysref_req_t_m1 <= up_sysref_req_t; rx_sysref_req_t_m2 <= rx_sysref_req_t_m1; rx_sysref_req_t_m3 <= rx_sysref_req_t_m2; if ((rx_sysref_cnt == 8'd0) || (rx_sysref_req_t_s == 1'b1)) begin rx_sysref_req <= rx_sysref_req_t_s; end end assign rx_sysref_enb_e_s = (rx_sysref_mode_e == 2'b10) ? rx_sysref_req : ((rx_sysref_mode_e == 2'b00) ? 1'b1 : 1'b0); always @(posedge rx_clk) begin rx_sysref_e <= rx_sysref_cnt[7] & rx_sysref_enb_e; rx_sysref_i <= rx_sysref_cnt[7] & rx_sysref_enb_i; if (rx_sysref_cnt == 8'd0) begin if (rx_sysref_enb_e == 1'b1) begin rx_sysref_ack_t <= ~rx_sysref_ack_t; end rx_sysref_enb_e <= rx_sysref_enb_e_s; rx_sysref_enb_i <= ~rx_sysref_mode_i; end end // sync-control at receive clock assign rx_sync_control_t_s = rx_sync_control_t_m3 ^ rx_sync_control_t_m2; always @(posedge rx_clk) begin rx_sync_control_t_m1 <= up_sync_control_t; rx_sync_control_t_m2 <= rx_sync_control_t_m1; rx_sync_control_t_m3 <= rx_sync_control_t_m2; if (rx_sync_control_t_s == 1'b1) begin rx_sync_mode <= up_sync_mode; rx_sync_disable_1 <= up_sync_disable_1; rx_sync_disable_0 <= up_sync_disable_0; end if (rx_sync_mode == 1'b1) begin rx_sync_out_1 <= ~rx_sync_disable_1 & rx_sync_1 & rx_sync_0; rx_sync_out_0 <= ~rx_sync_disable_0 & rx_sync_1 & rx_sync_0; end else begin rx_sync_out_1 <= ~rx_sync_disable_1 & rx_sync_1; rx_sync_out_0 <= ~rx_sync_disable_0 & rx_sync_0; end end always @(posedge rx_clk) begin rx_sync_cnt <= rx_sync_cnt + 1'b1; if ((rx_sync_cnt == 8'd0) || (rx_sync_1 == 1'b0)) begin rx_sync_hold_1 <= rx_sync_1; end if ((rx_sync_cnt == 8'd0) || (rx_sync_0 == 1'b0)) begin rx_sync_hold_0 <= rx_sync_0; end if (rx_sync_cnt == 8'd0) begin rx_sync_status_t <= ~rx_sync_status_t; rx_sync_status_1 <= rx_sync_hold_1; rx_sync_status_0 <= rx_sync_hold_0; end end // sync buffers OBUFDS i_obufds_rx_sync_1 ( .I (rx_sync_out_1), .O (rx_sync_1_p), .OB (rx_sync_1_n)); OBUFDS i_obufds_rx_sync_0 ( .I (rx_sync_out_0), .O (rx_sync_0_p), .OB (rx_sync_0_n)); // sysref delay control assign rx_sysref = rx_sysref_i; ad_data_out #( .FPGA_TECHNOLOGY (FPGA_TECHNOLOGY), .SINGLE_ENDED (0), .IODELAY_ENABLE (1), .IODELAY_CTRL (1), .IODELAY_GROUP ("FMCADC5_SYSREF_IODELAY_GROUP"), .REFCLK_FREQUENCY (DELAY_REFCLK_FREQUENCY) ) i_rx_sysref ( .tx_clk (rx_clk), .tx_data_p (rx_sysref_e), .tx_data_n (rx_sysref_e), .tx_data_out_p (rx_sysref_p), .tx_data_out_n (rx_sysref_n), .up_clk (up_clk), .up_dld (up_delay_ld), .up_dwdata (up_delay_wdata), .up_drdata (up_delay_rdata_s), .delay_clk (delay_clk), .delay_rst (delay_rst), .delay_locked (up_delay_locked_s)); // up == micro("u") processor up_axi i_up_axi ( .up_rstn (up_rstn), .up_clk (up_clk), .up_axi_awvalid (s_axi_awvalid), .up_axi_awaddr (s_axi_awaddr), .up_axi_awready (s_axi_awready), .up_axi_wvalid (s_axi_wvalid), .up_axi_wdata (s_axi_wdata), .up_axi_wstrb (s_axi_wstrb), .up_axi_wready (s_axi_wready), .up_axi_bvalid (s_axi_bvalid), .up_axi_bresp (s_axi_bresp), .up_axi_bready (s_axi_bready), .up_axi_arvalid (s_axi_arvalid), .up_axi_araddr (s_axi_araddr), .up_axi_arready (s_axi_arready), .up_axi_rvalid (s_axi_rvalid), .up_axi_rresp (s_axi_rresp), .up_axi_rdata (s_axi_rdata), .up_axi_rready (s_axi_rready), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata), .up_rack (up_rack)); endmodule