// *************************************************************************** // *************************************************************************** // Copyright (C) 2019-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/main/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_laser_driver #( parameter ID = 0, parameter ASYNC_CLK_EN = 1, parameter PULSE_WIDTH = 7, parameter PULSE_PERIOD = 10 ) ( // axi interface input s_axi_aclk, input s_axi_aresetn, input s_axi_awvalid, input [15:0] s_axi_awaddr, input [ 2:0] s_axi_awprot, output s_axi_awready, input s_axi_wvalid, input [31:0] s_axi_wdata, input [ 3:0] s_axi_wstrb, output s_axi_wready, output s_axi_bvalid, output [ 1:0] s_axi_bresp, input s_axi_bready, input s_axi_arvalid, input [15:0] s_axi_araddr, input [ 2:0] s_axi_arprot, output s_axi_arready, output s_axi_rvalid, output [ 1:0] s_axi_rresp, output [31:0] s_axi_rdata, input s_axi_rready, // external clock and control/status signals input ext_clk, output driver_en_n, output driver_pulse, input driver_otw_n, output driver_dp_reset, output reg [ 7:0] tia_chsel, // interrupt output irq ); // internal signals reg up_wack = 1'b0; reg up_rack = 1'b0; reg [31:0] up_rdata = 32'b0; reg driver_pulse_int_d = 1'b0; reg [ 1:0] sequence_counter = 2'b00; // internal signals wire clk; wire up_clk; wire up_rstn; wire up_rreq_s; wire up_rack_ld_s; wire up_rack_pwm_s; wire [13:0] up_raddr_s; wire [31:0] up_rdata_ld_s; wire [31:0] up_rdata_pwm_s; wire up_wreq_s; wire up_wack_ld_s; wire up_wack_pwm_s; wire [13:0] up_waddr_s; wire [31:0] up_wdata_s; wire [31:0] pulse_width_s; wire [31:0] pulse_period_s; wire load_config_s; wire pulse_gen_resetn; wire [31:0] pulse_counter_s; wire driver_pulse_int_s; wire [31:0] up_ext_clk_count_s; wire sequence_en_s; wire auto_sequence_s; wire [31:0] sequence_offset_s; wire [ 1:0] auto_seq0_s; wire [ 1:0] auto_seq1_s; wire [ 1:0] auto_seq2_s; wire [ 1:0] auto_seq3_s; wire [ 7:0] manual_select_s; // local parameters localparam [31:0] CORE_VERSION = {16'h0001, /* MAJOR */ 8'h00, /* MINOR */ 8'h61}; /* PATCH */ // 1.00.a localparam [31:0] CORE_MAGIC = 32'h4C534452; // LSDR assign up_clk = s_axi_aclk; assign up_rstn = s_axi_aresetn; // register maps axi_pulse_gen_regmap #( .ID (ID), .CORE_MAGIC (CORE_MAGIC), .CORE_VERSION (CORE_VERSION), .ASYNC_CLK_EN (ASYNC_CLK_EN), .PULSE_WIDTH (PULSE_WIDTH), .PULSE_PERIOD (PULSE_PERIOD) ) i_pwm_regmap ( .ext_clk (ext_clk), .clk_out (clk), .pulse_gen_resetn (pulse_gen_resetn), .pulse_width (pulse_width_s), .pulse_period (pulse_period_s), .load_config (load_config_s), .up_rstn (up_rstn), .up_clk (up_clk), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack_pwm_s), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata_pwm_s), .up_rack (up_rack_pwm_s)); axi_laser_driver_regmap #( .ID (ID), .LASER_DRIVER_ID (1) ) i_laser_driver_regmap ( .clk (clk), .driver_en_n (driver_en_n), .driver_otw_n (driver_otw_n), .pulse (driver_pulse_int_s), .up_ext_clk_count (up_ext_clk_count_s), .irq (irq), .sequence_en (sequence_en_s), .auto_sequence (auto_sequence_s), .sequence_offset (sequence_offset_s), .auto_seq0 (auto_seq0_s), .auto_seq1 (auto_seq1_s), .auto_seq2 (auto_seq2_s), .auto_seq3 (auto_seq3_s), .manual_select (manual_select_s), .up_rstn (up_rstn), .up_clk (up_clk), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack_ld_s), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata_ld_s), .up_rack (up_rack_ld_s)); // read interface merge always @(posedge up_clk) begin if (up_rstn == 0) begin up_wack <= 'd0; up_rack <= 'd0; up_rdata <= 'd0; end else begin up_wack <= up_wack_ld_s | up_wack_pwm_s; up_rack <= up_rack_ld_s | up_rack_pwm_s; up_rdata <= up_rdata_ld_s | up_rdata_pwm_s; end end // generic PWM generator's util_pulse_gen #( .PULSE_WIDTH(PULSE_WIDTH), .PULSE_PERIOD(PULSE_PERIOD) ) i_laser_driver_pulse ( .clk (clk), .rstn (pulse_gen_resetn), .pulse_width (pulse_width_s), .pulse_period (pulse_period_s), .load_config (load_config_s), .pulse (driver_pulse_int_s), .pulse_counter (pulse_counter_s)); // data path reset generation // this logic will generate a reset signal right before the generated pulse // in order to use it for resetting the cpack module, to synchronize it to // the driver pulse always @(posedge clk) begin driver_pulse_int_d <= driver_pulse_int_s; end assign driver_dp_reset = driver_pulse_int_s & ~driver_pulse_int_d; assign driver_pulse = driver_pulse_int_d; // clock monitor for the external clock up_clock_mon i_clock_mon ( .up_rstn (up_rstn), .up_clk (up_clk), .up_d_count (up_ext_clk_count_s), .d_rst (~pulse_gen_resetn), .d_clk (ext_clk)); // TIA sequencer always @(posedge clk) begin if (sequence_en_s == 1'b0) begin sequence_counter <= 2'b00; end else begin if (pulse_counter_s == sequence_offset_s) begin if (auto_sequence_s) begin sequence_counter <= sequence_counter + 1'b1; end end end end always @(posedge clk) begin if (sequence_en_s == 1'b0) begin tia_chsel <= 8'h00; end else begin if (pulse_counter_s == sequence_offset_s) begin if (auto_sequence_s) begin case (sequence_counter) 2'b00 : tia_chsel <= {auto_seq0_s, auto_seq0_s, auto_seq0_s, auto_seq0_s}; 2'b01 : tia_chsel <= {auto_seq1_s, auto_seq1_s, auto_seq1_s, auto_seq1_s}; 2'b10 : tia_chsel <= {auto_seq2_s, auto_seq2_s, auto_seq2_s, auto_seq2_s}; 2'b11 : tia_chsel <= {auto_seq3_s, auto_seq3_s, auto_seq3_s, auto_seq3_s}; default : tia_chsel <= 8'h00; endcase end else begin tia_chsel <= manual_select_s; end end end end // AXI Memory Mapped Wrapper up_axi #( .AXI_ADDRESS_WIDTH(16) ) i_up_axi ( .up_rstn (up_rstn), .up_clk (up_clk), .up_axi_awvalid (s_axi_awvalid), .up_axi_awaddr (s_axi_awaddr), .up_axi_awready (s_axi_awready), .up_axi_wvalid (s_axi_wvalid), .up_axi_wdata (s_axi_wdata), .up_axi_wstrb (s_axi_wstrb), .up_axi_wready (s_axi_wready), .up_axi_bvalid (s_axi_bvalid), .up_axi_bresp (s_axi_bresp), .up_axi_bready (s_axi_bready), .up_axi_arvalid (s_axi_arvalid), .up_axi_araddr (s_axi_araddr), .up_axi_arready (s_axi_arready), .up_axi_rvalid (s_axi_rvalid), .up_axi_rresp (s_axi_rresp), .up_axi_rdata (s_axi_rdata), .up_axi_rready (s_axi_rready), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata), .up_rack (up_rack)); endmodule