// *************************************************************************** // *************************************************************************** // Copyright 2011(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // *************************************************************************** // *************************************************************************** // This is the LVDS/DDR interface, note that overrange is independent of data path, // software will not be able to relate overrange to a specific sample! // Alternative is to concatenate sample value and or status for data. `timescale 1ns/100ps module axi_ad9652_if ( // adc interface (clk, data, over-range) adc_clk_in_p, adc_clk_in_n, adc_data_in_p, adc_data_in_n, adc_or_in_p, adc_or_in_n, // interface outputs adc_clk, adc_data_a, adc_data_b, adc_or_a, adc_or_b, adc_status, // processor control signals adc_ddr_edgesel, // delay control signals delay_clk, delay_rst, delay_sel, delay_rwn, delay_addr, delay_wdata, delay_rdata, delay_ack_t, delay_locked); // This parameter controls the buffer type based on the target device. parameter PCORE_BUFTYPE = 0; parameter PCORE_IODELAY_GROUP = "adc_if_delay_group"; // adc interface (clk, data, over-range) input adc_clk_in_p; input adc_clk_in_n; input [15:0] adc_data_in_p; input [15:0] adc_data_in_n; input adc_or_in_p; input adc_or_in_n; // interface outputs output adc_clk; output [15:0] adc_data_a; output [15:0] adc_data_b; output adc_or_a; output adc_or_b; output adc_status; // processor control signals input adc_ddr_edgesel; // delay control signals input delay_clk; input delay_rst; input delay_sel; input delay_rwn; input [ 7:0] delay_addr; input [ 4:0] delay_wdata; output [ 4:0] delay_rdata; output delay_ack_t; output delay_locked; // internal registers reg adc_status = 'd0; reg [15:0] adc_data_p = 'd0; reg [15:0] adc_data_n = 'd0; reg [15:0] adc_data_p_d = 'd0; reg adc_or_p = 'd0; reg adc_or_n = 'd0; reg adc_or_p_d = 'd0; reg [15:0] adc_data_a = 'd0; reg [15:0] adc_data_b = 'd0; reg adc_or_a = 'd0; reg adc_or_b = 'd0; reg [16:0] delay_ld = 'd0; reg delay_ack_t = 'd0; reg [ 4:0] delay_rdata = 'd0; // internal signals wire [ 4:0] delay_rdata_s[16:0]; wire [15:0] adc_data_p_s; wire [15:0] adc_data_n_s; wire adc_or_p_s; wire adc_or_n_s; genvar l_inst; // two data pin modes are supported- // mux - across clock edges (rising or falling edges), // mux - within clock edges (lower 7 bits and upper 7 bits) always @(posedge adc_clk) begin adc_status <= 1'b1; adc_data_p <= adc_data_p_s; adc_data_n <= adc_data_n_s; adc_data_p_d <= adc_data_p; adc_or_p <= adc_or_p_s; adc_or_n <= adc_or_n_s; adc_or_p_d <= adc_or_p; end always @(posedge adc_clk) begin if (adc_ddr_edgesel == 1'b1) begin adc_data_a <= adc_data_p_d; adc_data_b <= adc_data_n; adc_or_a <= adc_or_p_d; adc_or_b <= adc_or_n; end else begin adc_data_a <= adc_data_n; adc_data_b <= adc_data_p; adc_or_a <= adc_or_n; adc_or_b <= adc_or_p; end end // delay write interface, each delay element can be individually // addressed, and a delay value can be directly loaded (no inc/dec stuff) always @(posedge delay_clk) begin if ((delay_sel == 1'b1) && (delay_rwn == 1'b0)) begin case (delay_addr) 8'h10: delay_ld <= 17'h10000; 8'h0f: delay_ld <= 17'h08000; 8'h0e: delay_ld <= 17'h04000; 8'h0d: delay_ld <= 17'h02000; 8'h0c: delay_ld <= 17'h01000; 8'h0b: delay_ld <= 17'h00800; 8'h0a: delay_ld <= 17'h00400; 8'h09: delay_ld <= 17'h00200; 8'h08: delay_ld <= 17'h00100; 8'h07: delay_ld <= 17'h00080; 8'h06: delay_ld <= 17'h00040; 8'h05: delay_ld <= 17'h00020; 8'h04: delay_ld <= 17'h00010; 8'h03: delay_ld <= 17'h00008; 8'h02: delay_ld <= 17'h00004; 8'h01: delay_ld <= 17'h00002; 8'h00: delay_ld <= 17'h00001; default: delay_ld <= 17'h00000; endcase end else begin delay_ld <= 15'h0000; end end // delay read interface, a delay ack toggle is used to transfer data to the // processor side- delay locked is independently transferred always @(posedge delay_clk) begin case (delay_addr) 8'h10: delay_rdata <= delay_rdata_s[16]; 8'h0f: delay_rdata <= delay_rdata_s[15]; 8'h0e: delay_rdata <= delay_rdata_s[14]; 8'h0d: delay_rdata <= delay_rdata_s[13]; 8'h0c: delay_rdata <= delay_rdata_s[12]; 8'h0b: delay_rdata <= delay_rdata_s[11]; 8'h0a: delay_rdata <= delay_rdata_s[10]; 8'h09: delay_rdata <= delay_rdata_s[ 9]; 8'h08: delay_rdata <= delay_rdata_s[ 8]; 8'h07: delay_rdata <= delay_rdata_s[ 7]; 8'h06: delay_rdata <= delay_rdata_s[ 6]; 8'h05: delay_rdata <= delay_rdata_s[ 5]; 8'h04: delay_rdata <= delay_rdata_s[ 4]; 8'h03: delay_rdata <= delay_rdata_s[ 3]; 8'h02: delay_rdata <= delay_rdata_s[ 2]; 8'h01: delay_rdata <= delay_rdata_s[ 1]; 8'h00: delay_rdata <= delay_rdata_s[ 0]; default: delay_rdata <= 5'd0; endcase if (delay_sel == 1'b1) begin delay_ack_t <= ~delay_ack_t; end end // data interface generate for (l_inst = 0; l_inst <= 15; l_inst = l_inst + 1) begin : g_adc_if ad_lvds_in #( .BUFTYPE (PCORE_BUFTYPE), .IODELAY_CTRL (0), .IODELAY_GROUP (PCORE_IODELAY_GROUP)) i_adc_data ( .rx_clk (adc_clk), .rx_data_in_p (adc_data_in_p[l_inst]), .rx_data_in_n (adc_data_in_n[l_inst]), .rx_data_p (adc_data_p_s[l_inst]), .rx_data_n (adc_data_n_s[l_inst]), .delay_clk (delay_clk), .delay_rst (delay_rst), .delay_ld (delay_ld[l_inst]), .delay_wdata (delay_wdata), .delay_rdata (delay_rdata_s[l_inst]), .delay_locked ()); end endgenerate // over-range interface ad_lvds_in #( .BUFTYPE (PCORE_BUFTYPE), .IODELAY_CTRL (1), .IODELAY_GROUP (PCORE_IODELAY_GROUP)) i_adc_or ( .rx_clk (adc_clk), .rx_data_in_p (adc_or_in_p), .rx_data_in_n (adc_or_in_n), .rx_data_p (adc_or_p_s), .rx_data_n (adc_or_n_s), .delay_clk (delay_clk), .delay_rst (delay_rst), .delay_ld (delay_ld[16]), .delay_wdata (delay_wdata), .delay_rdata (delay_rdata_s[16]), .delay_locked (delay_locked)); // clock ad_lvds_clk #( .BUFTYPE (PCORE_BUFTYPE)) i_adc_clk ( .clk_in_p (adc_clk_in_p), .clk_in_n (adc_clk_in_n), .clk (adc_clk)); endmodule // *************************************************************************** // ***************************************************************************