// *************************************************************************** // *************************************************************************** // Copyright 2011(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_fifo2f ( adc_rst, adc_clk, adc_wr, adc_wdata, adc_wovf, dma_rstn, dma_clk, dma_wr, dma_wdata, dma_wready, dma_wovf, dma_xfer_req, dma_xfer_status); // parameters parameter ADC_ADDR_WIDTH = 8; parameter ADC_DATA_WIDTH = 256; parameter DMA_ADDR_WIDTH = 10; parameter DMA_DATA_WIDTH = 64; parameter DMA_READY_ENABLE = 1; localparam ADC_ADDR_LIMIT = (2**ADC_ADDR_WIDTH)-1; localparam MEM_RATIO = ADC_DATA_WIDTH/DMA_DATA_WIDTH; // adc write input adc_rst; input adc_clk; input adc_wr; input [ADC_DATA_WIDTH-1:0] adc_wdata; output adc_wovf; // dma read input dma_rstn; input dma_clk; output dma_wr; output [DMA_DATA_WIDTH-1:0] dma_wdata; input dma_wready; input dma_wovf; input dma_xfer_req; output [ 4:0] dma_xfer_status; // internal registers reg [ 2:0] adc_xfer_req_m = 'd0; reg adc_xfer_init = 'd0; reg adc_xfer_enable = 'd0; reg adc_wr_int = 'd0; reg [ADC_DATA_WIDTH-1:0] adc_wdata_int = 'd0; reg [ADC_ADDR_WIDTH-1:0] adc_waddr_int = 'd0; reg adc_waddr_rel_t = 'd0; reg [ADC_ADDR_WIDTH-1:0] adc_waddr_rel = 'd0; reg dma_rst = 'd0; reg [ 2:0] dma_waddr_rel_t_m = 'd0; reg [ADC_ADDR_WIDTH-1:0] dma_waddr_rel = 'd0; reg dma_xfer_req_d = 'd0; reg dma_xfer_init = 'd0; reg dma_rd = 'd0; reg dma_rd_d = 'd0; reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0; reg [DMA_ADDR_WIDTH-1:0] dma_raddr = 'd0; // internal signals wire dma_waddr_rel_t_s; wire [DMA_ADDR_WIDTH-1:0] dma_waddr_rel_s; wire dma_wready_s; wire dma_rd_enable_s; wire dma_rd_s; wire [DMA_DATA_WIDTH-1:0] dma_rdata_s; // write interface assign adc_wovf = 1'd0; always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_xfer_req_m <= 'd0; adc_xfer_init <= 'd0; adc_xfer_enable <= 'd0; end else begin adc_xfer_req_m <= {adc_xfer_req_m[1:0], dma_xfer_req}; adc_xfer_init <= adc_xfer_req_m[1] & ~adc_xfer_req_m[2]; if (adc_xfer_init == 1'b1) begin adc_xfer_enable <= 1'b1; end else if ((adc_waddr_int >= ADC_ADDR_LIMIT) || (adc_xfer_req_m[2] == 1'b0)) begin adc_xfer_enable <= 1'b0; end end end always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_wr_int <= 'd0; adc_wdata_int <= 'd0; adc_waddr_int <= 'd0; end else begin if (adc_xfer_init == 1'b1) begin adc_wr_int <= 'd0; adc_wdata_int <= 'd0; adc_waddr_int <= 'd0; end else begin adc_wr_int <= adc_wr & adc_xfer_enable; adc_wdata_int <= adc_wdata; if (adc_wr_int == 1'b1) begin adc_waddr_int <= adc_waddr_int + 1'b1; end end end end always @(posedge adc_clk or posedge adc_rst) begin if (adc_rst == 1'b1) begin adc_waddr_rel_t <= 'd0; adc_waddr_rel <= 'd0; end else begin if ((adc_wr_int == 1'b1) && (adc_waddr_int[2:0] == 3'd7)) begin adc_waddr_rel_t <= ~adc_waddr_rel_t; adc_waddr_rel <= adc_waddr_int; end end end // read interface assign dma_xfer_status = 1'd0; assign dma_waddr_rel_t_s = dma_waddr_rel_t_m[2] ^ dma_waddr_rel_t_m[1]; assign dma_waddr_rel_s = (MEM_RATIO == 2) ? {dma_waddr_rel, 1'd0} : ((MEM_RATIO == 4) ? {dma_waddr_rel, 2'd0} : {dma_waddr_rel, 3'd0}); always @(posedge dma_clk or negedge dma_rstn) begin if (dma_rstn == 1'b0) begin dma_rst <= 1'b1; dma_waddr_rel_t_m <= 'd0; dma_waddr_rel <= 'd0; end else begin dma_rst <= 1'b0; dma_waddr_rel_t_m <= {dma_waddr_rel_t_m[1:0], adc_waddr_rel_t}; if (dma_waddr_rel_t_s == 1'b1) begin dma_waddr_rel <= adc_waddr_rel; end end end always @(posedge dma_clk or negedge dma_rstn) begin if (dma_rstn == 1'b0) begin dma_xfer_req_d <= 'd0; dma_xfer_init <= 'd0; end else begin dma_xfer_req_d <= dma_xfer_req; dma_xfer_init <= dma_xfer_req & ~dma_xfer_req_d; end end assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready; assign dma_rd_enable_s = dma_wready_s & dma_xfer_req_d; assign dma_rd_s = (dma_raddr >= dma_waddr_rel_s) ? 1'b0 : dma_rd_enable_s; always @(posedge dma_clk or negedge dma_rstn) begin if (dma_rstn == 1'b0) begin dma_rd <= 'd0; dma_rd_d <= 'd0; dma_rdata_d <= 'd0; dma_raddr <= 'd0; end else begin if (dma_xfer_init == 1'b1) begin dma_rd <= 'd0; dma_rd_d <= 'd0; dma_rdata_d <= 'd0; dma_raddr <= 'd0; end else begin dma_rd <= dma_rd_s; dma_rd_d <= dma_rd; dma_rdata_d <= dma_rdata_s; if (dma_rd_s == 1'b1) begin dma_raddr <= dma_raddr + 1'b1; end end end end // instantiations ad_mem_asym #( .ADDR_WIDTH_A (ADC_ADDR_WIDTH), .DATA_WIDTH_A (ADC_DATA_WIDTH), .ADDR_WIDTH_B (DMA_ADDR_WIDTH), .DATA_WIDTH_B (DMA_DATA_WIDTH)) i_mem_asym ( .clka (adc_clk), .wea (adc_wr_int), .addra (adc_waddr_int), .dina (adc_wdata_int), .clkb (dma_clk), .addrb (dma_raddr), .doutb (dma_rdata_s)); ad_axis_inf_rx #(.DATA_WIDTH(DMA_DATA_WIDTH)) i_axis_inf ( .clk (dma_clk), .rst (dma_rst), .valid (dma_rd_d), .last (1'd0), .data (dma_rdata_d), .inf_valid (dma_wr), .inf_last (), .inf_data (dma_wdata), .inf_ready (dma_wready)); endmodule // *************************************************************************** // ***************************************************************************