// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsabilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module up_xfer_status #( parameter DATA_WIDTH = 8) ( // up interface input up_rstn, input up_clk, output reg [DW:0] up_data_status, // device interface input d_rst, input d_clk, input [DW:0] d_data_status); localparam DW = DATA_WIDTH - 1; // internal registers reg d_xfer_state_m1 = 'd0; reg d_xfer_state_m2 = 'd0; reg d_xfer_state = 'd0; reg [ 5:0] d_xfer_count = 'd0; reg d_xfer_toggle = 'd0; reg [DW:0] d_xfer_data = 'd0; reg [DW:0] d_acc_data = 'd0; reg up_xfer_toggle_m1 = 'd0; reg up_xfer_toggle_m2 = 'd0; reg up_xfer_toggle_m3 = 'd0; reg up_xfer_toggle = 'd0; // internal signals wire d_xfer_enable_s; wire up_xfer_toggle_s; // device status transfer assign d_xfer_enable_s = d_xfer_state ^ d_xfer_toggle; always @(posedge d_clk or posedge d_rst) begin if (d_rst == 1'b1) begin d_xfer_state_m1 <= 'd0; d_xfer_state_m2 <= 'd0; d_xfer_state <= 'd0; d_xfer_count <= 'd0; d_xfer_toggle <= 'd0; d_xfer_data <= 'd0; d_acc_data <= 'd0; end else begin d_xfer_state_m1 <= up_xfer_toggle; d_xfer_state_m2 <= d_xfer_state_m1; d_xfer_state <= d_xfer_state_m2; d_xfer_count <= d_xfer_count + 1'd1; if ((d_xfer_count == 6'd1) && (d_xfer_enable_s == 1'b0)) begin d_xfer_toggle <= ~d_xfer_toggle; d_xfer_data <= d_acc_data; end if ((d_xfer_count == 6'd1) && (d_xfer_enable_s == 1'b0)) begin d_acc_data <= d_data_status; end else begin d_acc_data <= d_acc_data | d_data_status; end end end assign up_xfer_toggle_s = up_xfer_toggle_m3 ^ up_xfer_toggle_m2; always @(negedge up_rstn or posedge up_clk) begin if (up_rstn == 1'b0) begin up_xfer_toggle_m1 <= 'd0; up_xfer_toggle_m2 <= 'd0; up_xfer_toggle_m3 <= 'd0; up_xfer_toggle <= 'd0; up_data_status <= 'd0; end else begin up_xfer_toggle_m1 <= d_xfer_toggle; up_xfer_toggle_m2 <= up_xfer_toggle_m1; up_xfer_toggle_m3 <= up_xfer_toggle_m2; up_xfer_toggle <= up_xfer_toggle_m3; if (up_xfer_toggle_s == 1'b1) begin up_data_status <= d_xfer_data; end end end endmodule // *************************************************************************** // ***************************************************************************