// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1 ns / 1 ns module cic_decim ( input clk, input clk_enable, input [4:0] filter_enable, input reset, input [11:0] filter_in, input [2:0] rate_sel, output [11:0] filter_out, output ce_out ); localparam NUM_STAGES = 6; localparam DATA_WIDTH = 106; reg [11:0] filter_input_stage = 'h00; wire signed [DATA_WIDTH-1:0] data_stage[0:NUM_STAGES*2]; wire signed [DATA_WIDTH-1:0] data_final_stage; reg [16:0] counter = 'h00; reg ce_comb = 1'b0; reg ce_out_reg = 1'b0; reg [11:0] data_out = 'h00; reg [15:0] rate; wire [4:0] enable = (clk_enable == 1'b1) ? filter_enable : 5'b0; always @(*) begin case (rate_sel) 3'h1: rate <= 16'd5 - 1; 3'h2: rate <= 16'd50 - 1; 3'h3: rate <= 16'd500 - 1; 3'h6: rate <= 16'd5000 - 1; default: rate <= 16'd50000 - 1; endcase end wire [15:0] counter_in = counter[16] == 1'b1 ? rate : counter[15:0]; always @(posedge clk) begin if (reset == 1'b1) begin counter <= {1'b1,16'h00}; end else if (clk_enable == 1'b1 && enable[0] == 1'b1) begin counter <= counter_in - 1'b1; end end always @(posedge clk) begin if (reset == 1'b1) begin ce_comb <= 1'b0; end else begin ce_comb <= enable[0] & counter[16]; end end always @(posedge clk) begin if (enable[0] == 1'b1) begin filter_input_stage <= filter_in; end end assign data_stage[0] = $signed(filter_input_stage); generate genvar i; for (i = 0; i < NUM_STAGES; i = i + 1) begin cic_int #( .DATA_WIDTH(DATA_WIDTH), .NUM_STAGES(5), .STAGE_WIDTH(20) ) i_int ( .clk(clk), .ce(enable), .data_in(data_stage[i]), .data_out(data_stage[i+1])); end endgenerate cic_comb #( .DATA_WIDTH(DATA_WIDTH), .SEQ(5), .NUM_STAGES(5), .STAGE_WIDTH(20) ) i_comb0 ( .clk(clk), .ce(ce_comb), .enable(filter_enable), .data_in(data_stage[6]), .data_out(data_stage[11])); cic_comb #( .DATA_WIDTH(DATA_WIDTH), .SEQ(1), .NUM_STAGES(5), .STAGE_WIDTH(20) ) i_comb1 ( .clk(clk), .ce(ce_comb), .enable(filter_enable), .data_in(data_stage[11]), .data_out(data_stage[12])); assign data_final_stage = data_stage[2*NUM_STAGES]; always @(posedge clk) begin if (ce_comb == 1'b1) begin case (rate_sel) 'h1: data_out <= data_final_stage[25:14]; 'h2: data_out <= data_final_stage[45:34]; 'h3: data_out <= data_final_stage[65:54]; 'h6: data_out <= data_final_stage[85:74]; default: data_out <= data_final_stage[105:94]; endcase end ce_out_reg <= ce_comb; end assign ce_out = ce_out_reg; assign filter_out = data_out; endmodule // cic_decim